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Summary. We discuss the recent achievements in the application of asymptotic
methods based on Fourier Integral Operators (FIOs) for inversion and direct mod-
eling of radio occultations. We show that FIOs can be derived from the first prin-
ciples: stationary phase principle and energy conservation. We discuss accurate and
approximate solutions for the kernel of the FIOs. The approximations can be used
for designing very efficient numerical algorithms, where the FIOs are reduced to a
composition of multiplying with reference signals and Fourier transforms. Inversion
algorithms use FIO that retrieves the geometric optical ray structure of wave fields.
Asymptotic methods of forward modeling are based on inverse FIOs that map the
geometric optical ray structure to wave fields. Such algorithms are very fast and
significantly reduce numerical inaccuracies, which arise in computation of multiple
diffractive integrals.

1 Introduction

Fourier Integral Operators (FIOs) are a very effective means of analysis of
wave fields measured in radio occultation experiments [Gorbunov, 2002a, b;
Gorbunov and Lauritsen, 2002; Jensen et al., 2002; Gorbunov, 2003; Gor-
bunov and Kornblueh, 2003; Jensen et al., 2003, 2004; Gorbunov et al., 2004;
Gorbunov and Lauritsen, 2004]. These operators generalize the standard con-
struction of geometrical optics (GO) [Mishchenko et al., 1990]. The basis of
GO is the stationary phase principle which describes rays. Rays are curves in
the phase space, where there is no multipath, because rays interfering at the
some coordinate have different directions, or momenta. Multipath in physical
space 1is characterized by the projection type of the ray manifold. The idea of
the canonical transform method is to change coordinates in the phase space
so as to change the projection type of the ray manifold [Gorbunov, 2002a;
Gorbunov and Lauritsen, 2004]. The new coordinates should also result in the
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same minimum action principle [Kleinert, 1993]. Fourier Integral Operators
generalize the concept of geometric optical canonical transform for wave fields.
The stationary phase principle and energy conservation allow for establishing
the equation for the kernel of the transform.

The physical principles of stationary phase and energy conservation allow
for establishing all the known phase functions of the FIO used in Canonical
Transform (CT) method based on FIO of the 1st type, Full-Spectrum Inver-
sion (FSI) method and Phase Matching (PM) [Jensen et al., 2004; Gorbunov
and Lauritsen, 2004]. The reduction of the FIOs to FT can be done by using
some coordinate transform or approximation that linearizes the phase func-
tion [Gorbunov and Lauritsen, 2004]. The FIO associated with the linearized
canonical transform assures high numerical efficiency.

By inverting the FIOs discussed above we can write the transform from the
impact parameter representation to the representation of the physical coordi-
nate [Gorbunov, 2003]. This results in fast asymptotic algorithm of forward
modeling. Such algorithms can be very efficient in numerical applications.
Sometimes direct modeling requires multiple phase screens. This is the case
when diffraction inside the medium is not negligible, e.g. in the presence of
turbulence. The last step from the last phase screen to the LEO orbit is per-
formed by the computation of multiple diffractive integrals. This procedure is
very inefficient numerically and, besides, it may be a source of computational
inaccuracy. A very efficient solution of the problem of propagation of waves
in a vacuum from a phase screen to an observation curve is given by the FIO
based on the corresponding linearized CT.

2 Basic principles of Fourier Integral Operators

2.1 Basic Waveforms

Fourier Integral Operators (FIOs) are used for constructing asymptotic so-
lutions of wave problems [Mishchenko et al.; 1990]. FIO-based asymptotic
solutions generalize the standard geometric optics (GO). A FIO maps a geo-
metric optical solution into to an asymptotic solution of a wave problem. For
radio occultations it 1s of primary importance that this construction can be
inverted and the GO solution can be extracted from the measured wave field.
This allows for the retrieval of bending angle profiles from measurements of
wave fields in multipath regions [Gorbunov, 2002a, b]. This also increases the
resolution beyond the Fresnel zone, which limits the applicability of the stan-
dard geometric optical approach. Below we shall discuss the principles of the
theory of FIOs using a few basic physical principles (Fermat’s principle and
energy conservation).

We will discuss a 2D wave problem. This is a typical approximation for the
atmosphere, where the vertical scale is significantly less than the vertical scale.
This allows for neglecting effects of diffraction due to gradients transversal to



Asymptotic wave optics and radio occultations 3

Fig. 1. Basic waveforms: (left) plane waves; (right) cylindrical harmonics.

the occultation plane. We introduce generic coordinates «, y in the plane. Spe-
cific choice of the coordinate system can be different. It is only important that
axis x is preferred direction of wave propagation. For example, if we discuss a
plane incident wave, then it is convenient to use Cartesian coordinates (z,y).
For a spherical wave we can choose polar coordinates (r, 8).

Wave field u(z,y) can be expanded with respect to basic wave forms. We
begin the consideration from the Cartesian coordinates. Wave field can be
represented in the form u(z,y) = A(x,y) exp (tk¥(z,y)), where A(z,y) is the
amplitude, and ¥ (xz,y) is the eikonal. This form is convenient for description
of the wave field in a single ray are, where the amplitude is a smooth function.
For Cartesian coordinates, the most convenient choice of the basic wave forms
will be plane waves (Figure 1):

up(z,y) = u(0,n) exp [zk (\/1 — e+ ny)} : (1)

2r . . . .
where k = ~7 is the wavenumber, ( 1—n?, 77) is the unity ray direction

vector, and @(0,n) equals the Fourier transform of the wave field u(0,y) in
some source plane, x = 0, with respect to y:

u(0,m) =4/ _Q—jf/U(O, y) exp (—ikny) dy. (2)

The wave vector of a plane wave equals k = (kg, ky) = (k\/l — 72, kn). Mo-

mentum equals 77 = sin?. The element of optical path along the ray equals
simply the element of the length (Figure 1):

de = /1 —n?ds, dy=nds, (3)
dV =ndy— Hdx = /1 —n?dr+ndy = ds. (4)
Each plane wave corresponds to a family of parallel rays.

A similar consideration can be performed for polar coordinates r, #. In this
case the basic wave forms are cylindrical waves (Figure 1):
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Fig. 2. (left) Schematic ray manifold in the phase space. The ray manifold evolves
along the coordinate z. The type of its projection can be changed by choosing
new coordinates (z,¢) in the phase space. (right) Virtual variations of ray paths in
different canonical coordinates in the phase space.

2
up(r,0) = ﬂ(ro,n)ql%exp lzk’ (\/1— Z—ZT—I—UH)

and the momentum equal ray impact parameter, = rsiny = p.

If we consider an arbitrary wave field u(z,y) = A(z,y)exp (k¥ (z,y)),
o

then we can define ray direction at every point as n(y) = ju(x,y) ~ 3

, (5)

This definition only works if there i1s a single ray, and the amplitude is a
smooth function. In this case the derivative of the amplitude can be neglected.
Function n(y) defines the ray manifold in the phase space with coordinates
(y,n). The single-ray propagation corresponds to the situation when the ray
manifold has an unique projection to the axis y. Multipath propagation means

that n(y) is a multi-valued function, and it cannot be expressed as s

From the geometric optical view point, the problem of multipath can be
solved by another choice of coordinate and momentum (y,7) in the phase
space. We need to parameterize the phase space by a different coordinate and
momentum (z, &) in such a way that the projection of the ray manifold to the
new axis z is unique, and therefore, £(z) is a single-valued function (Figure
2). Generally speaking, when introducing the new coordinates (z,&) we have
to define the new Hamilton function. We also need to find the corresponding
transform @ of the wave field. The space of possible transforms 1s defined by
two fundamental principles; 1) Fermat principle, 2) energy conservation.

2.2 Stationary Phase Principle and Canonical Transforms

The Fermat principle should hold both in the old and new coordinates [Arnold,
1978; Kleinert, 1993]:
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(#1,91) (z1,91)

=94 / dv =4 / ndy— H dx =0, (6)
(l‘oyyu) (l‘oyyu)
(#1,21) (#1,21)

' =4 / dv’' =4 / Edz— H'dz =0, (7)
(%0,20) (%0,20)

where the integrals are taken along the same physical ray parameterized by
different coordinates. The ray connects points (yg, 7o) and (y1,m1), or (z0,&0)
and (z1, €1). The variations of ray paths have the following restrictions: dyy 1 =
0 and §z91 = 0 (Figure 2). The variations of momenta are not restricted (we
allow arbitrary variations of the ray direction).

Because the new coordinate z is a function of (y, 1), the boundary condition
0z = 0 may imply some variation dy # 0, and vice versa. To establish the
relation between d¥ and d¥’ we consider arbitrary variations of the optical
path form 6¥ and 6%’ in the vicinity of a stationary path, not restricted with
conditions ¢ys,1 = 0 and dzp,1 = 0:

o = noylZt, S = ¢35z (8)

We require that d¥' — d¥ = £dz — ndy — (H' — H) dx should be equal to a
full differential dS [Arnold, 1978; Kleinert, 1993]. For arbitrary variations of
an arbitrary trajectory in the phase space we have then the following relation:

5@’—5@:5/d5: 5S(y,z)|§;:€5z—n5y|z;. (9)

To

Therefore, if for some path & = 0 with the boundary condition dyo1 = 0,
then for the same path 6%’ = 0 with boundary condition dzp; = 0. If we
consider a cross section of the phase space frozen at some fixed z, then we
can write the reduced equation:

dS = &dz —ndy, (10)
0S 0S
9. g, % =N (11)

A transform from (y, n) to (z,&) such that £ dz — ndy equals a full differential
dS is termed canonical, S(z,y) being its generating function [Arnold, 1978].

2.3 Fourier Integral Operator of 2nd Type

Consider now a complex integral transform on the wave field u(y):

v(z) = ngu(z) =1/ _Q—jf/az(z, y) exp (tkS2(z, v)) u(y)dy. (12)
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We will refer to this operator as to a FIO of the 2nd type [Gorbunov and

Lauritsen, 2002, 2004]. The transformed wave field v(z) can be written in the

form A’(z) exp (ik¥'(z)). Our aim is to find a transform of the wave field that
o

implements a canonical transform, 1.e. given the momentum # =7 of

)

' (2)

z

the wave field u(y), the momentum of the transformed wave field v(z)

should be equal to &.

2.4 Energy conservation

Another important requirement 1s that this transform conserves the energy of
the wave field [Egorov, 1985; Egorov et al., 1999]:

/vv*dz:/uu*dy. (13)

From this it follows that the conjugated operator Qg”z‘ should be equal to the
inverse operator @2_1, because by definition

/ézu (ngu)*dz = /u (@;ngu)*dz, (14)
Q%v(y) = ng_lv(z) = @/ a(z,y)exp (—ikSa2(z,y)) v(z)dz. (15)

Substituting u(y) = d(y—yo) and considering dgu(z) we have ¥/ (z) = Sa(z, yo).
From here it follows that —= = ¢. Substituting v(z) = d(z—z0) and consider-

ing Qg_lv(z) we have U (y) = —S3(20,y). From here it follows that %ﬁ = -

)
Thus we see that Sa(z,y) equals the generating function of the canonical

transform S(z, y).
The simplest form of a Fourier Integral Operator 1s the Fourier transform:

So(z,y) = —zy, (16)

= 05 = —z (17)

_ 9% 952
62 - y’ 77_ 8y ?

&=

which implements a 7/2 rotation of the phase plane (y,n) = (z = 1, = —y).

2.5 Fourier Integral Operator of 1st Type

Another, 1st, type of FIO can be expressed as a composition of two FIOs of
the 2nd type, one of which is the Fourier transform [Egorov, 1985]:

v =)=/ e s i, 09
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where the equation for the generating function Sy is similar to that for Si:

dS; = &dz + ydny, (19)
051 051
0z £, an Y. (20)

3 Processing Radio Occultations

3.1 Phase Function: Accurate and Approximate Solutions

The application of the technique of FIOs for processing radio occultation data
uses the fact that impact parameters uniquely characterize rays in a spheri-
cally symmetric atmosphere [Gorbunov, 2002a, b; Gorbunov and Lauritsen,
2002; Jensen et al., 2002; Gorbunov, 2003; Gorbunov and Kornblueh, 2003;
Jensen et al.; 2003, 2004; Gorbunov et al., 2004; Gorbunov and Lauritsen,
2004]. Equations (11,20) can be directly applied for the derivation of the
phase functions [Gorbunov and Lauritsen, 2004]:

Sa(p,y) = —/n(p, y)dy, Si(p,n) = /y(p, n)dn. (21)

Now consider the expression for the derivative of the optical path of a radio
occultation signal:

W:n(p,t)EHp—i——L\/r%—pz—l——G\/rzG—pz. (22)
rL rg
This allows for the derivation of the exact phase function [Jensen et al., 2004]:
dr dr
Sa(p,t) = —/ (pd9—|— —G\/rzG -p’+ —L«/r% —pz) =
rg rL
_ 2 2 p 2 2 p
= —pl — \/ré — p? + parccos — — /7] — p? + parccos —. (23)
rg rL

The corresponding momentum equals minus refraction angle:

0P (p) _ 05(p,ts(p) p p
&(p) = i o = —0 + arccos o + arccos e e(p). (24)

Precise phase function is inconvenient for numerical implementation, be-
cause the corresponding operator cannot be reduced to the Fourier transform.
To reduce this operator to the Fourier transform, it is necessary to use some
approximation. The simplest approximation is that implemented in the Full-
Spectrum Inversion method [Jensen et al., 2003]:

— _ _ T_G 2 2 7°_L 2 _ 52 = _
Sa(p, ) = —pb /(rG\/rG pm—i—rL\/rL pm)dﬁ_ p9+/F(9)d9,

(25)
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where pm, = pm(0) is the a priori model of impact parameter variation.
The corresponding momentum &(p) equals minus satellite-to-satellite angle,
852/8}) = —0.

More accurate approximation is based on the linearization of the canonical
transform from (¢,n) to (p,€) in the vicinity of some model [po(t), no(t)]
[Gorbunov and Lauritsen, 2004]:

. Ipo Ipo

t = —(n — = f(t —_— 26
p(t, n) Pt g, (n = mo) f()+37777, (26)

. . -1

v Ta Po rL Po
f(t)zpo—(g—— - ) - (27)
rG\r& =y LN — D
Instead of (¢,7n) we introduce scaled coordinate and frequency (7', o):

a100) - drg Po drp, Po
ay = | — dt=df - ——  — —— 28
(377 rG \/r% —p} rL \/r? — p? (28)

Ipo

=" 29
o=, (29)

This scaling allows for the derivation of the linear canonical transform and its
generating function:

p=f1)+o, (=-T, (30)
S(5,T) = —/U(ﬁ, T)T = —T + /f(T) ar. (31)

The FIO with this phase function is very similar to FSI, but it uses more
precise approximation, and the definition of scaled coordinate 7" instead of @
takes into account the deviation of the trajectory from circle.

Figure 3 shows the profiles of temperature, humidity, real refractivity and
specific absorption for GPS frequencies from a high-resolution radio sonde
data. This profile was used for modeling a spherically symmetrical atmosphere.
A radio occultation experiment was simulated using multiple phase screen
technique, and the simulated data were processed by CT method based on
the FIO with the phase function (31). The simulation was performed for GPS
frequencies. The results of processing the simulated data are shown in Figure
3. The complicated profile of bending angle is retrieved with a good accuracy.

4 Forward Modeling

4.1 Wave Propagation in Atmosphere

Fourier integral operators can also be used for asymptotic direct modeling

[Gorbunov, 2003; Gorbunov and Lauritsen, 2004]. The FIOs 51,2 can be eas-

ily inverted: le_é = §ZA5”1‘72. If we use the representation of approximate impact
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perature, T', and dry temperature, Tary, (b) specific humidity, ¢, (¢) CT amplitudes
for the two channels, and (d) refraction angles, comuted by the GO model and
retrieved by the CT method.

parameter p, then the direct model is especially efficient. Given a 3D atmo-
spheric model, we first perform geometric optical modeling, and iteratively
find the trajectory point 7 (p), where the ray with the impact parameter
p(p) is observed. The wave function in the p-representation is then equal to
w(p) = A'(p)exp (—ik’fTs(ﬁ)dﬁ), where the amplitude A’(p) equals a nor-
malizing constant in the light zone and 0 in the geometric optical shadow.
This function i1s then mapped into the 7-representation by the inverse FIO
[Gorbunov and Lauritsen, 2004]:

u(T)

T
- @ exp | =it [ 100y ar| [ exp(hiT) ax(T.5).) () dp
0

(32)
For modeling atmospheric absorption, the amplitude A’(5) must also be multi-
plied by a factor of exp (—k f n”ds), where n’ is the imaginary part of refrac-
tive index, and the integral is taken along the ray with the impact parameter
p(P). A similar direct modeling algorithm can be constructed by inverting the
operator used in the FSI method.
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Fig. 4. Validation of asymptotic direct modeling. Amplitude of simulated radio oc-
cultation signal as function of time: (1) MPS simulation (solid line) and (2) asymp-
totic simulation based on the FIO2 (A, dotted line).

For the validation of the asymptotic direct modeling we performed nu-
merical simulations with a simple spherically-symmetrical phantom (refrac-
tive index field model). The phantom represents an exponential model with a
quasi-periodical perturbation:

n(z) = 1+ Ny exp (—%) [1 + acos (2%) exp (-2—2)] . (33)

where z is the height above the Earth’s surface, Ng = 300 x 10~° is the char-
acteristic refractivity at the Earth’s surface (300 N-units), H = 7.5 km is
the characteristic vertical scale of refractivity field, a = 0.003 is the relative
magnitude of the perturbation, A = 0.3 km is the period of the perturbation,
L = 3.0 km is the characteristic height of the perturbation area. This phan-
tom was smoothly combined with the MSIS climatological model above 20
km. We simulated radio occultation signals using MPS and the asymptotic
solution for the frequency 9.7 GHz, which is intended to be used in LEO-LEO
occultations. The results of the comparison of the amplitude of the simu-
lated wave field for these two modeling techniques are presented in Figure 4.
The peculiarity of the amplitude around 28.5 s is due to the transfer from
MSIS to the test phantom. Between 40 and 47.5 s the amplitude indicates
large-scale oscillations reproducing the oscillations of the refractivity profile.
In this area there is no multipath propagation. After 47.5 s we notice increas-
ing small-scale scintillations due to emergence of multipath propagation. The
occultation fragment from 57 to 59 s with strong multipath scintillations is
enlarged and shown separately. Figure 4 illustrates a good agreement of both
these simulation techniques.
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4.2 Wave Propagation in Vacuum

Asymptotic forward modeling has the following applicability limitation: it can-
not be used for modeling effects of diffraction inside the atmosphere. Accurate
account of diffraction on small-scale atmospheric structures is necessary e.g.
for modeling wave propagation in a turbulent atmosphere. In this case it is
necessary to apply multiple phase screen technique. Previously, the step from
the last phase screen to the LEO orbit is performed by the computation of
multiple diffractive integrals. The computation of diffractive integrals is not
only very ineffective numerically, it is also a source of computational inac-
curacies. However, using the technique of FIOs it is possible to construct an
asymptotic solution of wave propagation in a vacuum from a straight phase
screen to an arbitrary observation curve that can be reduced to the Fourier
transform.

Consider the wave field up(y) in the phase screen plane, where y is the
vertical coordinate, and the observation curve X (¢),Y (¢) (Figure 5). The ac-
curate solution based on the plane wave expansion of the source field can
easily written:

u(t) = @ / exp (ikX(t)\/l —+ ikY(t)n) do(m)dy.  (34)

This is FIO of the first type with the following phase function:

Si(t,n) = XOV1-n*+Y (). (35)

This operator transforms the wave field from the representation (y,n) in the
source plane to the representation (¢,¢) on the observation curve. We can
write the standard differential equation for the phase function:

dS1 = odt + ydn, (36)

925, 0o Oy
aton — on ot (37)

which corresponds to the following equations describing straight rays:

o= aa—f:X(t)\/l—n2+Y(t)n, (38)
=95 vy - x)—2

y

Operator (34) provides an accurate solution. However, it cannot be reduced
to the Fourier transform in general case. For a vertical observation trajectory,
X (t) = const, we can parameterize the observation trajectory with coordinate
Y, and the operator will turn into a Fourier transform.

For a general case, we will construct an approximation based on the lin-
earization of the canonical transform (y,7n) — (¢, 7). For this we introduce
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smooth model of the ray structure [to(n), o0(n), yo(n), 70(t)]. Then the canon-
ical transform can be linearized:

ot a0t

t—to-I-a—y(y—yo)—to ayyo-i-&gil/—f(77)‘|'za (40)
80’0

U:Uo-i-W(U—UO):Uo—fo+5:g(t)+5 (41)

Instead of (y,n), we introduced scaled coordinate and momentum using (37):

Oty Ao\ ~"
Z = ay y dg ( ) n (42)

This allows for the derivation of the phase function:
dS = odt + zd§ = (g(t) + E)dt + (L — f(£))dE (43)
s(t.6) = [atnde— [ rerde + e (4

The approximate FIO is represented as a composition of multiplication with
the first reference signal a(ty(€), €) exp (—ik f f(&’)d&’), Fourier transform, and
multiplication with the second reference signal exp (zk fg(t)dt):

u(t) = gexp (ik/g(t)dt) x
< [ altn(e). ) exp (kg exo (—ik / f(&)d€) ao(n(€)de (45)

We used the same radio sonde profile as above for validation of the algo-
rithm of wave propagation from a phase screen to LEO orbit based on FIO
(45). Figure 5 presents a comparison of the amplitude of the wave field com-
puted by the FIO with that computed by the standard algorithm based on
Fresnel integrals. The results of the two methods are in a very good agree-
ment. However, the occultation data obtained by Fresnel integral technique
break at 62 s, while the data obtained by FIO technique still continue. This
is linked with the difficulty of the identification of the stationary point of the
Fresnel integral near the border of shadow zone, where the signal becomes
weak. In this example, we observe a sharp spike of refraction angle. Such a
spike produces a very weak signal, which may be difficult to compute by Fres-
nel integral technique. However, such signals are not a problem for the FIO
technique.

5 Conclusions

FIOs provide a generalization of geometric optical canonical formalism for
wave optics. This allows for using them for solving problem of disentangling
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Fig. 5. (left) Geometry of wave propagation from phase screen to LEO orbit. (right)
Validation of FIO-based algorithm of wave propagation from phase screen to LEO
orbit. Amplitude of simulated radio occultation signal as function of time: (1) FIO
algorithm (solid line) and (2) Fresnel integrals (dotted line).

multipath by finding an unique projection of ray manifold. Another, equivalent
view of FIOs is based on signal processing approach and frequency matching
principle: at the stationary point of the oscillating integral the frequency of
the signal is matched by the frequency of the oscillating kernel. This principle
allows for sorting signal components with different instantaneous frequencies.

The practical meaning of FIOs for inversion and forward modeling of ra-
dio occultation data cannot be underestimated. 1) FIOs provide high accuracy
and vertical resolution in the retrieval of refraction angles. 2) FIOs allow for
the retrieval of transmission due to atmospheric absorption. 3) Using reason-
able approximations, it is possible to reduce the FIOs to a composition of
multiplication with a reference signal and Fourier transforms. This is impor-
tant for achieving high numerical efficiency of inversion algorithms. 4) FIOs
can be very effectively used in the forward modeling of radio occultation sig-
nals.
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