

GPS occultation data products from the GRAS SAF

Georg Bergeton Larsen

GRAS SAF Project Manager Atmosphere Ionosphere Research Division (AIR) Danish Meteorological Institute (DMI) Copenhagen

Outline of presentation

- GRAS SAF Project overview and plans
 - Organisation of the project
- Occultation measurement principle
 - Satellites and instrument
 - Distribution of measurements
 - Examples
- User requirements
- Data products
- Overview of the processing system
- Summary

Project overview and plans

- **GRAS SAF project started in 1999**
 - **Operational facility for atmosphere products from GRAS** instrument on Metop (Launch planned in late 2005)
 - **5** year developments
- **Partner Institutes** •
 - Danish Meteorological Institute (Host institute)
 - Met Office, UK
 - **IEEC**, Spain
- **Milestones**
 - 2000 Requirements review (User and science requirements)
 - **2001 Requirements review (Design requirements)**
 - 2003 Mid-Term review (Critical design review)
 - 2007 Operational products from GRAS SAF

GRAS SAF

The principle of GPS occultations

The occultation measurement

The GPS constellation

The 2002 EUMETSAT Meteorological Satellite Conference, Dublin, 2 - 6 September 2002

GRAS SAF

IEEC

The GRAS instrument on Metop

The 2002 EUMETSAT Meteorological Satellite Conference, Dublin, 2 - 6 September 2002

GRAS SAF

Ge EUMETSAT DMI IEEC The Met.Offic

Distribution of GRAS SAF profiles

Retrieved Temperature Profile

GPS/MET occultation 42 on Feb 15th 1997

GRAS SAF

Retrieved Water Vapour Profile

GPS/MET occultation Feb 9, 1997 at UT 16:15 lat: -14 lon: 141

Data products from the GRAS SAF

DMI, IEEC

- Data products (Level 2)
 - Refractivity profiles
 - Temperature profiles
 - Pressure profiles
 - Water vapor profiles
 - Surface pressure
 - Geographical location
 - Bending angle (Offline, Level 1)

Met Office

- 4DVAR Assimilation Software
 - Forward operators
 - Error covariance matrix

Data products description

- Data products description document
 - Near real time data products
 - Offline data products
 - Error covariance products
 - Validation products
 - Software products (4DVAR assimilation)
- Description of the data products
- Supporting data (Level 1)
- User questionnaire
- User workshop

Temperature product

Quantity	Values		Remarks	
Baguiramant	RTS-1060			
Kequitement	OLS-1070			
Units	Kelvin (K)			
Domoin	0–50 km (NRT)		Surface to 1 hPa	
Domain	0–80 km (Offline)		Surface to 0.01hPa	
Range	180–350 K			
Precision	0.1 K			
Vertical sampling	0.5 km		depends on background	
			pressure levels	
Accuracy	NRT	Offline	'Dry' temperatures are	
0–5 km	2–3 K	2 K	unlikely to meet accuracy	
5–30 km	1 K	<1 K	requirements at the lowest	
30–40 km	1–5 K	1–3 K	levels except in regions of	
40–50 km	5–10 K	5–10K	very low humidity.	
50–80 km	N/A	5–10 K		

Humidity product

Quantity	Values	Remarks	
Doquiromont	RTS-1070		
Kequitement	OLS-1080		
Units	kg.kg ⁻¹	Specific humidity	
Domain	0–15 km	Surface to 100 hPa	
Range	$0-50 \text{ g.kg}^{-1}$		
Precision	0.001 g.kg^{-1}		
Vertical sampling	0.5 km	depends on background	
		pressure levels	
Acouraou	$10\% \text{ or } 0.2 \text{ g.kg}^{-1} \text{ (NRT)}$	which avar is graatast	
Accuracy	5% or 0.1 g.kg ⁻¹ (Offline)		

Generic User requirements

		Temperature	Specific Humidity	Surface Pressure
Horizontal Domain		Global	Global	Global
Horizontal Resolution	on	50–500 km	50–250 km	50–250km
Vertical Domain		Sfc to 1 hPa	Sfc to 100 hPa	Sfc (msl)
	LT	0.3–3 km	0.4–2 km	_
Vertical	HT	1–3 km	1–3 km	_
Resolution	LS	1–3 km	_	_
	HS	1–3 km	_	_
Time Resolution		1–12 hrs	1–12 hrs	1–12hrs
	LT	0.5–3 K	0.25–1 g/kg	0.5–2 hPa
RMS	HT	0.5–3 K	0.025–0.1 g/kg	_
Accuracy	LS	0.5–3 K	_	_
	HS	0.5–5 K	_	_
Timeliness		1–4 hrs	1–4 hrs	1–4hrs

Generic User Requirements for global NWP (Source: WMO TD No. 913, SAT-21, 28/9/1998) **GRAS SAF**

Ge EUMETSAT DMI IEEC The Met.Offic

GRAS SAF

GRAS/Metop User Requirements

	-	
() EL	METSAT	
DM IEE		
The	C Met.Office	

		Temperature	Specific Humidity	Surface Pressure	Refractivity	Bending Angle
Horizontal Domain		Global	Global	Global	Global	Global
Horizontal Sampling		100–2000km	100 – 2000km	100–2000km	100–2000km	100–2000km
Vertical Domain		Sfc–1 hPa	Sfc–100 hPa	Sfc (msl)	Sfc–1 hPa	Sfc–80 km
Vertical	LT HT	0.3–3km 1–3 km	0.4–2 km 1–3 km	_	0.3–3 km 1–3 km	
Sampling		1-3 km	-	_	1–3 km	2–5 Hz
	HS	1–3 km		—	1–3 km	
Time Window		1–12 hrs	1–12 hrs	1–12 hrs	1–12 hrs	1–12 hrs
	LT	0.5–3 K	0.25–1 g/kg	0.5–2 hPa	0.1-0.5%	¦ 1 μrad
RMS	HT	0.5–3 K	0.05–0.2g/kg	—	0.1-0.2%	or
Accuracy	LS	0.5–3 K	—	_	0.1-0.2%	0.4%
	HS	0.5–5 K	_	_	0.2–2%	
Timeliness		1-3 hrs	1–3 hrs	1–3 hrs	1–3 hrs	1–3 hrs

GRAS Metop User Requirements Climate Monitoring

		Temperature	Specific Humidity	
Horizontal Domain		Global	Global	
Horizontal Sampling		100–1000 km	100–1000 km	
Vertical Domain		Surface to 1 hPa	Surface to 1 hPa	
	LT	0.3–3 km	0.5–2 km	
Vertical	HT	1–3 km	0.5–2 km	
Resolution	LS	1–3 km	0.5–2 km	
	HS	5–10 km	1–3 km	
Time Resolution		3–24 hrs	3–24 hrs	
	LT	0.5–3 K	0.25–1 g/kg	
RMS	HT	0.5–3 K	0.05–0.2 g/kg	
Accuracy	LS	0.5–3 K	_	
	HS	1–3K	_	
Timeliness		30–60 days	30–60 days	
Time Domain		> 10 years	> 10 years	
Long-term Stability		< 0.1 K/decade	< 2% RH/decade	
No. of profiles/ grid box/month		> 10	> 10	

GRAS SAF Data Flow Model

The 2002 EUMETSAT Meteorological Satellite Conference, Dublin, 2 - 6 September 2002

GRAS SAF

•

The Met.Office

Advantages of GPS Atmosphere Profiling

Absolute measurement

• The basics of the observations are a measurement of time.

Global coverage

 The geometry of the observation leads for one satellite to evenly distributed data on a 24-hour interval. Observations over seas and oceans (covering 70% of the Earth) minimize the major error source concerning accuracy of weather forecast and climate models.

High vertical resolution

• The vertical resolution limited by the Fresnel zone of the observation leads to information of atmosphere phenomena with scale sizes less than 1 km.

Insensitive to clouds and precipitation

• The wavelengths applied makes the measurement transparent to clouds and rain hampering other space techniques.

Summary

- GRAS SAF processing system
- Data products
 - Vertical profiles of temperature and humidity
 - Near real time dissemination, requirement 3 hrs
 - Distributed globally
- Software product for 4DVAR assimilation
- User requirements
- Expected number of atmospheric profiles per day 600
- Available to users from beginning of 2007

www.dmi.dk/pub/GRASSAF