

The GRAS SAF Project

- an Operational Radio Occultation System

Frans Rubek, Georg Bergeton Larsen, Hans-Henrik Benzon, Kent Bækgaard Lauritsen, Martin Bjært Sørensen Danmarks Meteorologiske Institut (Denmark)

Josep M. Aparicio, Antonio Rius Institut d'Estudis Espacials de Catalunya (Spain)

> Dave Offiler, Sean Healy, Adrian Jupp *The Met Office (UK)*

<u>G</u>lobal navigation satellite system <u>Receiver for</u> <u>Atmospheric</u> <u>Sounding</u> <u>Satellite</u> <u>Application</u> Facility

- a EUMETSAT Project

www.dmi.dk/pub/GRAS_SAF

Host Institute: Danish Meteorological Institute (Denmark) Partners: Institute d'Estudis Espacials de Catalunya (Spain) The Met Office (UK)

EUMETSATs EPS/Metop Satellite

ION GPS 2001

Salt Lake City

September 11 - 14 2001

GRAS SAF

Geuner DMI IEEC

Salt Lake City

Project Schedule

		1999	1	2000	2001	2002	2003	2004
ID	Task Name	H1 H	2	H1 H2	H1 H2	2 H1 H2	H1 H2	H1 H2
1	WP10000 Coodination and management	-						
17	Preparatory phase	-						
23	WP20000 Research and Development	-						
24	WP22000 Data product retrieval algorithms	-						
25	WP22100Sounding Products	•	Ť					
32	WP22200 Refractivity products	-						
35	WP22300 Atmosphere products			-				
39	WP23000 Development of assimilation software			•				
42	WP24000 Error analysis							
47	WP25000 Geophysical scenarios			-		7		
53	WP30000 Development of the software and processing chain							
54	WP31000 Sounding products							
59	WP32000 Refractivity products				-			
63	WP33000 Atmosphere products				-	—		
67	WP34000 Assimilation processing software							
72	WP40000 Development of validation products and software						-	
77	WP50000 Design, development and integration of data manager			-				
95	WP60000 Intgration and testing in the overall EPS ground segm(
101	Reviews	-						
102	Kick-Off	♦ 4/4	8					
103	RADR-RR			♦ 6/	28			
104	RADR-DR				♦ 5/	16		
105	Mid-Term Review (MTR)					♦ 5/6	5	
106	Integration Readiness Review (IRR)						🔶 1/9 –	
107	System Integration Verification and Validation Review (SIVVR)						•	10/1
108	Operational Readiness Review (ORR)							♦ 4/22
109	Preliminary Proposal for the Operational Phase (POP)					♦ 6/	3	

ION GPS 2001

Salt Lake City

Occultation seen in Perspective

Salt Lake City

September 11 - 14 2001

GRAS SAF

C EUMETSAT DMI IEEC The Met.Office

General Principle of Radio Occultation Data Processing

Bending angle: Obtained from the measured phases (of the radio signals traversing the media from the GPS to the EPS/Metop satellite) and the position and velocities of the two satellites

lonospheric corrected bending angle: Obtained by linearily combining the bending angles (α 1 and α 2) corresponding to the two radio frequencies (L1 and L2)

Refractivity: Calculated from the bending angle as a function of height using the Abel Transform inversion scheme or other methods

"Dry" temperature and pressure: Obtained using the ideal gas law and assumption of hydrostatic equilibrium

Water vapor (specific humidity) and "wet" pressure: Obtained using an ancillary temperature source and an iterative algorithm

Salt Lake City

September 11 - 14 2001

DMI IEEC The Met.Office

GRAS SAF

Advantages of Radio Occultations

Absolute measurement

The technique needs <u>no</u> calibration. The basics of the observation is a measurement of time.

Global coverage

The geometry of the observation leads for one satellite to evenly distributed data on a 24-hour interval. Observations over seas and oceans (covering 70% of the Earth) minimize the major error source in accuracy of weather forecast and climate models.

High vertical resolution

The vertical resolution limited by the Fresnel zone of the observation leads to information of atmosphere phenomena with scale sizes less than 0.5 km.

Insensitive to clouds and precipitation

The wavelengths applied makes the measurement transparent to clouds and rain hampering other space techniques.

GRAS SAF Products

Data Product

Refractivity Profile

Observation Characteristics

Temperature Profile

Specific Humidity Profile

Pressure Profile

Characteristics

Neutral Refractivity as a function of height and location of the occultation

Error profile and covariance matrices of the observables. Time information for the occultation data. Latitude, longitude and radial position of the occultation products in geodetic coordinates.

Temperature and error estimate as a function of height and location of the occultation

Specific humidity (water vapor) and error estimate as a function of height and location of the occultation

Pressure and error estimate as a function of height and location of the occultation, including surface pressure

GRAS SAF Assimilation S/W Products

Statistically optimal 1D-Var refractivity retrieval code

Forward models for 4D-Var:

- Direct assimilation of refractivity profiles into an NWP model
- Plane-averaged refractivity forward model for assimilation into an NWP model
- Direct assimilation of bending angle as a function of impact parameter into an NWP model

GRAS SAF

GRAS SAF Products Time Requirements

Offline Products:

To be delivered less than 3 hours after measurement, using RMDCN (Regional Meteorological Data Communication Network), GTS, a.o. *Mainly for NWP use.*

Improved products re-processed using precise satellite orbits, additional NWP input, etc.

To be delivered less than 30 days after measurement, using FTP, DVD/CD-ROM, WWW download, a.o.

Mainly for climate research use.

GRAS SAF

IEEC The Met.Off

Salt Lake City

Salt Lake City

Salt Lake City

User Requirements for NWP

ION GPS 2001

Salt Lake City

September 11 - 14 2001

IEEC The Met.Office

User Requirements for Climate Research

		Temperature	Specific Humidity			
Horizontal Doma	in	Global	Global			
Horizontal Sampl	ing	100–1000 km	100–1000 km			
Vertical Domain		Surface to 1 hPa	Surface to 1 hPa			
	LT	0.3–3 km	0.5–2 km			
Vertical	HT	1–3 km	0.5–2 km			
Resolution	LS	1–3 km	0.5–2 km			
	HS	5–10 km	1–3 km			
Time Resolution		3–24 hrs	3–24 hrs			
	LT	0.5–3 K	0.25–1 g/kg			
RMS	HT	0.5–3 K	0.05–0.2 g/kg			
Accuracy	LS	0.5–3 K	—			
	HS	1–3K	—			
Timeliness		30–60 days	30–60 days			
Time Domain		> 10 years	> 10 years			
Long-term Stabili	ity	< 0.1 K/decade	< 2% RH/decade			
No. of profiles/ grid box/month		> 10	> 10			

ION GPS 2001

Salt Lake City

GRAS SAF Outlook

- First EPS/Metop satellite to be launched in 2005 (target)
- GRAS SAF will supply continuous, operational radio occultation data for weather forecasts and climate research
- Growth potential: Inclusion of GALILEO reception capability on future EPS/Metop satellites, inclusion of occultation data from other satellites in GRAS SAF processing

More information about the project:

www.dmi.dk/pub/GRAS_SAF

(The following slides are for optional use during the question session only)

GRAS Zenith Antenna GZA

2 EUMETSAT DMI IEEC The Met.Office

GRAS SAF

Two element antenna, L1 and L2

Salt Lake City