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Abstract

This document contains a technical description and �rst results of the assimilation system de-
veloped within the framework of the Visiting Scientist project No. 10 at the GRAS SAF (Global
Navigation Satellite System Receiver for Atmospheric Sounding Satellite Application Facility) to
conduct climate studies using RO (Radio-Occultation) data and ECMWF (European Center for
Medium Range Forecast) �elds. It is a mature and improved version of the system which is presen-
ted detailed in [Loescher(2004)]. The method of choice is 3D-Var (Three Dimensional Variational
Assimilation) realized as a system which allows to merge information from di¤erent sources (in our
case RO data and from ECMWF ERA40 (European 40 Years Reanalysis) data derived �rst guess
�elds) under the assumption of known error structures, in a statistically optimal way. In short
the whole system is based on a 3D-VAR implementation using climatological background �elds
and error covariances representing the departure of the atmospheric state from the climatological
mean.
The main idea behind this project is to probe the application of a methodology used in nu-

merical weather prediction (NWP) for climate and atmospheric variability studies. To tackle the
computational challenge inherent to large scale optimization ESA�s Computing Grid on-Demand is
used for the trial runs. Since computing power increases constantly such optimization technologies
will play a more prominent role in the future not only in climate applications but also in cross
validation activities and bias removal procedures. Balancing the shortcoming of di¤erent remote
sensing techniques by combining them, results in a product of signi�cant added value re�ecting, in
an optimal case, only the advantages of the di¤erent observations used. The use of a time discrete
scheme like 3D-Var to merge di¤erent kinds of observations (or in this case one kind of observa-
tion and a background) to generate analyses of the atmospheric state at di¤erent time scales is
apparent.
A challenge inherent to assimilation systems is the correct de�nition of the error patterns. This

work is assessing climate change and atmospheric variability studies, thus monthly means are en-
visaged as baseline. To that end suitable background �elds and the respective error characteristics
have to be derived since no suitable data is readily available.
Beside the technical aspects the document covers the derivation of the �rst guess �elds and the

respective variations which are used as proxies for errors structures from the ERA40 data based on
monthly means. The derived �rst guess �elds comprising the respective variances and the vertical
correlation matrices (for temperature, speci�c humidity and surface pressure) had been used within
the assimilation test-bed summer season June, July and August (JJA) 2004. A possible method
to calculate the horizontal correlations for the respective variables is presented and the results
of some example calculations are shown. Within the assimilation test-bed modi�ed global mean
horizontal correlations used within ECMWF�s IFS (Integrated Forecast System) in 2003 have been
used. It is recommended to refer to [Loescher et al.(2008)Loescher, Retscher, Fusco, Goncalves,
Brito, and Kirchengast ] which complements this report and contains a summary, �rst results and
an exhaustive list of references.
This document describes the methodology used to realize a 3D-Var assimilation system for

climate and atmospheric variability studies containing �rst results and the characteristics of all
relevant data is organized as follows:
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Section 1
The kind of data which is used for the assimilation experiments is introduced, some background
information on ERA40 �elds monthly mean �elds and ECMWF data is given here. The rationale
to select the time frame to derive the �rst guess data from the reanalysis is explained.

0.1 Section 2
Radio occultation data is speci�ed here in some detail (focus on CHAMP), with a brief outlook
on future and present radio occultation missions (e.g. MetOp GRAS & COSMIC).

0.2 Section 3
Here the speci�c implementation of the temperature, speci�c humidity and surface pressure
(TQPsurf) 3D-Var system is described in some detail. The realization of control space trans-
formations and the preconditioning is explained, as well as the use of recursive �lters within this
framework. The observation and background covariance matrices are de�ned, the observation
operators are explained in detail and the minimization routine is introduced.
An important part of this section addresses the used background error patterns namely variances

and correlations from the ERA40 monthly mean �elds. The way which the vertical part of the
background error covariance matrix has been derived is explained and possible methods to derive
horizontal correlation matrices are presented.

Section 4
Some details on the break down of the radio occultation pro�le resolution to a background com-
patible data density (data thinning) and preprocessing procedures are given here.

Section 5
Possible quality control procedures are presented and the check for observations below the oro-
graphy is introduced here.

Section 6
Brief explanation of adjoint code validation techniques.

Section 7
The results of the �rst assimilation experiments with quasi operational CHAMP data from the sum-
mer season June, July, August (JJA) 2004 on ESA�s high performance grid on demand computing
cluster are presented and the convergence behavior is discussed.

Conclusions
Some conclusions from the results presented in section 7 are drawn and speci�c issues are addressed.
A short outlook is given and future perspectives are discussed.

Appendices
Additional information concerning the used notation, constants and acronyms.
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1 Background Data

The use of background data is in general �exible, here background �elds derived from 21 years of
ECMWF�s ERA40 data are used. This approach makes the system model independent in the sense
that �rst guess and error characteristics are static in contrast to the use of any kind of operational
NWP output, where the �elds have to be adapted to any change in the NWP system itself or
the assimilated observation systems. Monthly mean �elds for the six hour time layers around 00,
06, 12 and 18 UTC have been averaged to get a �rst guess of temperature, speci�c humidity and
surface pressure. The same procedure has been applied to derive the �elds of variances for these
parameters, correlations are derived in a similar way (cf. 3.8.2).

1.1 ECMWF ERA40 Fields
As background for the assimilation procedure ECMWF N48L60 ERA40 derived �elds, correspond-
ing to a Gaussian grid composed of 192 � 96 geographic areas, and 60 standard model levels up
to a height of � 64 km are used. The resolution of the vertical grid is highest in the planetary
boundary layer and lowest in the stratosphere and lower mesosphere. These vertical levels are
realized as hybrid levels, which means they are composed as � - levels which follow the Earth�s
surface in the lower and mid troposphere, but are surfaces of constant pressure (pressure levels) in
the upper stratosphere and mesosphere with a smooth transition between these types of levels.
Since a reanalysis has to be done within a reasonable timeframe the computational cost has to be

cut down. Using an older version of the system on nowadays hardware is a unsatisfactory solution,
omitting advanced and better formulations within the state of the art implementation. Thus a
version which represents a compromise had to be developed. In the ERA40 case a modi�ed form
of the three dimensional variational analysis scheme used operationally as the ECMWF medium
range prediction system between January 1996 and November 1997 was used. It comprises a
triangular truncation at wavenumber 159 (T159) for the spectral representation of atmospheric
�elds and 60 vertical levels. In addition there is a grid point representation used for computing
dynamic tendencies and the diabatic physical parametrization. This so called Gaussian grid, is
regular in longitude but not regular in latitude. Due to the convergence of the longitudes towards
the poles, the east-west distance between the grid points decreases polewards. To avoid some
numerical problems around the poles and most importantly, to save computing time, a reduced
Gaussian grid was introduced by reducing the number of grid points along the shorter latitude lines
near the poles, so as to keep the east-west separation between points on di¤erent latitudes almost
constant (~125km) [Simmons(2004)], [ECMWF (2003)]. The representation of the orography uses
the mean orography and is signi�cantly smoother than reality (Fig. 1, from a 2003 operational
analysis).
ECMWF�s ERA40 covers a 45 year period from September 1957 to August 2002 [Kellberg

et al.(2004)Kellberg, Simmons, Uppala, and Fuentes]. To derive the monthly mean �elds and
variances a period of 21 years has been chosen starting from 1980, covering a period marked by the
increasing and lately extensive use of satellite observations within GCM�s, improving the analysis
quality of remote and data sparse areas (especially over the southern hemisphere) signi�cantly.
For our application global temperature, speci�c humidity, and surface pressure �elds are used. As
discussed below the spatial characteristics of Radio Occultation data (moderate horizontal, high
vertical resolution) �ts quite well to this background grid spacing [Gobiet and Kirchengast(2004)].
ECMWF o¤ers a broad spectrum of analysis and forecast products [Person(2003)].

2 Radio Occultation Data

With the successful launch of the CHAMP satellite in summer 2000 and the start of its GPS Radio
Occultation experiment in February 2001, the number of available RO-based atmospheric pro�les
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Figure 1: Model orography for the T42 resolution.

increased in a way that long term climatological studies become feasible. A good collection of RO
related articles can be found in [Kirchengast et al.(2004)Kirchengast, Foelsche, and Steiner ] and
[Kirchengast et al.(2006)Kirchengast, Foelsche, and Steiner ]. In addition to CHAMP, also the RO
experiments on the Argentinean SAC-C satellite contributes data (SAC-C data is fragmentary and
limited to certain periods, at the moment further data from SAC-C is questionable). The �rst
successful processed GRACE RO pro�les were published by JPL on 29 of July 2004, GRACE data
is available on a CHAMP like base. Furthermore, a RO receiver (GRAS) [EUMETSAT (2003)] is
part of the payload of the METOP series of polar-orbiting, operational meteorological satellites
operated by EUMETSAT and ESA, which was successfully launched 19. October 2006, 16:28
UTC on a Soyuz launcher from Baikonur. The COSMIC mission (launched 6:40 p.m. PDT form
the Vandenberg Air Force Base, CA, on Friday, April 14. 2006) already delivers a continuous
stream of RO data. The global coverage, all-weather capability, high vertical resolution, accuracy
and long term stability of RO data makes them an ideal candidate to build global climatologies
of fundamental variables such as temperature, geopotential height and water vapor [Kirchengast
et al.(2004)Kirchengast, Foelsche, and Steiner ], [Gobiet and Kirchengast(2004)].
At the moment a comprehensive CHAMP data set starting 2002 is available. For this study

data from the summer season 2004 (JJA 2004) around the 00 analysis time layer has been used
(cf. Tab1).

Time Number of Pro�les Number of Pre-Processed Observations
JJA 2004 JJA 2004

00 2905 157757

Table 1: For assimilation study used observations from JJA 2004 time 00.
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2.1 The RO Technique
Radio Occultation (RO) is a novel active limb sounding technique to derive atmospheric key para-
meters. The measurement setup comprises a receiver mounted on a low Earth orbit (LEO) satellite,
which tracks the signal of a global navigation system (GPS) satellite positioned in a medium Earth
orbit (MEO), in an occultation geometry. The challenges from a technical point of view imply the
necessity of an extremely high frequency stability in the signal and the positions and velocities of
transmitter and receiver must be known to very high degree of accuracy. The concept was success-
fully proven on-board the Micro Lab 1 satellite (GPS/MET experiment) [Kursinski et al.(1996)]
and is now quasi operationally implemented as part of the CHAMP and COSMIC missions and
fully operational as part of MetOp. Fig. 2 illustrates the concept of the RO technique, which
is the interaction of electromagnetic waves (GPS signals) and the (in our application) terrestrial
atmosphere. An electromagnetic ray passing through the atmosphere is bent and retarded due to
the ionosphere and the Earth�s refractivity �eld. In our application the signal must be corrected for
the in�uence of the ionosphere which is accomplished by a di¤erential approach. For other applic-
ations this information of the signal is used to derive maps of the ionosphere and the total electron
content (TEC). The e¤ect of the atmosphere onto the electromagnetic waves can be characterized
by a total bending angle (�) as a function of the impact parameter (a). The impact parameter is
de�ned, assuming spherical symmetry, as the perpendicular distance between the center of local
curvature at the perigee of the occultation ray and the ray asymptote at the GPS or LEO satellite.

2.1.1 Unique Advantages for Monitoring of Atmospheric Key Parameters

Due to the measurement principle, Radio Occultation features some preferable characteristics
which makes it an ideal technique for a long term monitoring of atmospheric key parameters
[Anthes et al.(2000)Anthes, Rocken, and Kuo]. Its long term stability and self-calibrating concept
makes it an ideal candidate for climate studies.

� The atmospheric pro�les are not derived from absolute intensities or phase delays.

� The pro�les are derived from transmissions (normalized intensities) and the Doppler shift
(phase change) pro�les (intrinsic self-calibration).

� Only short-term stability is necessary during the occultation event.

2.1.2 Characteristic Horizontal and Vertical Resolution of RO Measurements

One of the characteristics of a RO measurement is its high vertical (�z) and moderate to low
horizontal (�L) spatial resolution. The following relation is valid

�L = 2 �
p
2 �R ��z , (1)

where �L denotes the chord, which is de�ned by the tangent of the inner of two concentric circles
with radii which di¤er about �z. R is the radius of the inner circle, which is in fact the atmospheric
radius at the tangent point of the ray path. If geometric optics is applied, the vertical resolution
is limited by the diameter of the �rst Fresnel Zone dF . For occultation geometry, this can be
calculated by negligible atmosphere (stratosphere) as follows

dF = 2 �
p
� �D ,

where � denotes the wavelength of the GPS signal and D the distance between the GPS receiver
on-board CHAMP and the tangent point. With � = 19 cm and D = 2:600 km (orbit height
of 500 km) for the diameter of the �rst Fresnel Zone a value of 1:4 km follows. Using Eq. 1 a
horizontal resolution �L of � 270 km can be calculated. Caused by the exponential increase of
the refractivity towards the Earth�s surface (troposphere) dF becomes smaller and reaches close
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Figure 2: Geometry of an radio occultation measurement including LEO satellite (CHAMP), GPS satellites
and �ducial network.

to the Earth�s surface a value of 0:5 km [Kursinski et al.(1997)Kursinski, Hajj, Scho�eld, K., and
Hardy ] which translates into a horizontal resolution of about � 80 km. It is possible to enhance
the vertical resolution by using methods which take di¤raction e¤ects into account
[Gorbunov and Gurvich(1998)], [Wickert(2002)].

2.2 Retrieval

2.2.1 General RO Retrieval

As a basic idea the radio signals emitted by the GNSS satellites can be treated as rays, which
means a geometric optics assumption. This is a valid simpli�cation from the mid-troposphere
upwards. However below some 7 km wave optics methods, which can cope with complex signal
structures in the presence of strong refractivity gradients enhance the retrieval performance signi-
�cantly [Gorbunov(2002)], [Hocke et al.(1999)Hocke, Pavelyev, Yakovlev, Barthes, and Jakowski ],
[Sokolovskiy(2003)]. At the moment the IGAM retrieval for CHAMP data uses only the geomet-
ric optics approach. The use of a retrieval procedure which blends geometric optics assumption
from the mid-troposphere upwards with wave optics methods derived data in the lower regions is
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foreseen to be used in the near future.

GPS Frequencies L1 = 1575:42 MHz

L2 = 1227:60 MHz

The primary observables are the phase delays of GNSS signals, resulting from the deceleration
of the electromagnetic wave�s phase velocity by the atmosphere. The Doppler shifts and total
bending angles � as function of the ray�s impact parameter a can be deduced from the phase
delays [Kursinski et al.(1997)Kursinski, Hajj, Scho�eld, K., and Hardy ]. The basis to derive � is
the Doppler-Shift equation [Gorbunov et al.(1996)Gorbunov, Sokolovskiy, and Bengtsson]:

fd = fc

�
c��!�2�!m2n2
c��!�1�!m1n1

� 1
�
, (2)

where �!�1 and �!�2 denote the velocity vectors of the occulting GPS and CHAMP satellites, �!m1 and�!m2 are the unit vectors of the wave vector of the transmitted and received signals, n1 and n2 are
the refractivities at the corresponding satellite positions. The Doppler shift fd corresponds to the
measured phase as

fd = �
fc
c

dL

dt
, (3)

with the carrier frequency fc and the vacuum speed of light c. It is possible to decompose L as

L = L0 + dAL0 , (4)

so it is possible to decompose the Doppler shift

fd = fd0 + fdA . (5)

The �rst term describes the frequency shift without atmospheric in�uence, caused by the relative
motion of the satellites and can be calculated from precise orbit data. The second term is the time
derivative of calibrated atmospheric induced signal delay of the occultation link which is composed
of an ionospheric part and a part of the neutral atmosphere. The angle of refraction � can be
derived as follows

� = �1 +�2 +�� � . (6)

The angles �1 and �2 are the only unknowns in Eq. 6, after solving the scalar product and
the introduction of the measured Doppler shift in Eq. 2 [Kursinski et al.(1997)Kursinski, Hajj,
Scho�eld, K., and Hardy ] and can be derived under the assumption of local spherical symmetry of
the refractivity n = n(r) using Snells law

r1n(r1) sin�1 = r2n(r2) sin�2 = a . (7)

Eq. 2 and Eq. 7 are a non linear system which can not be solved analytically, but with a simple
iterative procedure [Gorbunov et al.(1996)Gorbunov, Sokolovskiy, and Bengtsson]. Eq. 7 also
provides the impact parameter a. Furthermore an ellipsoid and an ionosperic correction have to
be applied. As a next step the refractivity index n can be derived via an inverse Abel transform
[Fjeldbo et al.(1971)Fjeldbo, Eshleman, and Kliore]

n(a) = exp

24 1
�
�
1Z
a

�(a0)p
a02 � a2

da0

35 . (8)

The refractivity as a function of height N(a) is obtained via Eq. 8

N(a) = 106 � (n(a)� 1)

z(a) =
a

n(a)
�Rc
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where Rc denotes the local radius of curvature of the Earth�s ellipsoid at the occultation location.
Bending angles above � 45 km are dominated by ionospheric e¤ects [Hocke(1997)]. Since the
ionosphere is a dispersive medium and thus causes di¤erent L1 and L2 phase delays, it is possible
to remove these e¤ects to �rst order by linear combination of these two signals. The method
of linear correction of bending angles Eq. 9 has been applied most successfully [Vorobev and
Krasnilnikova(1994)] by

�LC(a) =
f21�1(a)� f22�2(a)

f21 � f22
, (9)

where �LC denotes the ionosphere corrected bending angle, �1 and �2 the uncorrected bending
angles of the L1 and L2 signals. Still, retrieval results above 20 � 30 km are sensitive to residual
ionospheric noise (resulting from higher order terms, which are not corrected by Eq. 9) and other
errors like receiver noise, residual clock errors, local multipath and orbit uncertainties. Since
the upper integration limit of the inverse Able transform in Eq. 8 ranges to in�nity it needs in
practice some kind of high altitude initialization. To avoid downward propagation of errors via
the Abel transform itself and subsequently via the hydrostatic integration Eq. 24 one has to be
careful. To minimize these errors the concept of statistical optimization is applied [Sokolovskiy and
Hunt(1996)]. The best linear unbiased estimator (BLUE Eq. 10; [Loescher(2004)])

xa = xb +K (y �H(xb)) (10)

�opt is derived from an observed �O and a background �B bending angle pro�le under the as-
sumption of unbiased Gaussian errors. The O and B are the observation and background error
covariance matrices, respectively. The �opt is derived by

�opt = �B + (B
�1
+O�1)�1� B�1 � (�O ��B) . (11)

Where �opt is a fused bending angle pro�le dominated by the background in the upper part
and by the observation in the lower part. The IGAM retrieval scheme integrates background
information only at one point of the retrieval (at bending angle level), so that the results have well
de�ned error characteristics. Since Eq. 11 assumes that the errors of �O and �B are uncorrelated
nowadays ECMWF �elds already containing RO information might pose a problem using this
approach. One has to be careful if background information is used in a retrieval procedure, if
the retrieved data is used in a consecutive assimilation framework. If the assimilation framework
uses the same background data as the retrieval we end up with a so-called incest problem1 . The
analysis in the assimilation procedure is arti�cially drawn closer to the background than justi�ed.
At IGAM, statistical optimization is implemented in two ways, both relying on Eq. 11, but using
di¤erent sources of background information and di¤erent ways of preprocessing of this information.
IGAM/MSIS uses bending angle pro�les extracted from the MSIS-90 climatology [Hedin(1991)]
and applies best �t pro�le library search and bias correction procedures [Gobiet et al.(2004b)Gobiet,
Steiner, Retscher, Foelsche, and Kirchengast ] in order to diminish known biases in the climatology
[Randel et al.(2002)Randel, Chanic, and Michaut ]. IGAM/ECMWF uses bending angle pro�les
derived from ECMWF operational analyses. For the assimilation experiment data derived with
the IGAM/ECMWF framework has been used, since the �rst guess �elds are derived from ERA40
data no incest problem occurs.

1 cf. 3.7.
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IGAM/MSIS IGAM/ECMWF
Outlier Rejection and
Smoothing

3� outlier rejection on phase
delays and smoothing using reg-
ularisation

Like IGAM/MSIS

Ionospheric Correction Linear combination of bending
angles. Correction is applied to
low-pass �ltered bending angles
(1 km sliding average), L1 heigh-
pass contribution is added after
correction. L2 bending angles <
15 km derived via L1�L2 extra-
polation.

Like IGAM/MSIS

Bending Angle Initial-
isation

Statistical optimisation of bend-
ing angles 30-120 km. Vertical
correlated background (corr.
lenght L=6 km) and observation
(L=1 km) errors. Obs. error
estimated from obs. pro�le >
60 km. Background error:15%.
Background information: MSIS-
90 best �t-pro�le, bias corrected.

Like IGAM/MSIS, but co-
located bending angel pro�le
derived from ECMWF oper-
ational analysis (above �60
km: MSISE-90) as back-
ground information. No fur-
ther processing.

Hydrostat. Integral
Init.

At 120 km: pressure=p(MSISE-
90).

Like IGAM/MSIS

Qality Control Refractivity 5-35 km �N
N < 10%;

Temperature 8-25 km: �T
T <

25K; Reference: ECMWF ana-
lysis.

Like IGAM/MSIS

Table 2: Overview of IGAM CHAMP-RO retrival schemes (EGOPS/CCR Version 2, March 2004.)

2.3 Data Products
From the phase delay measurements a variety of atmospheric parameters can be derived. In theory,
some parameters (e.g. dry temperature) could be derived without any background information,
but in practice, as mentioned above, the retrieval procedure has to be initialized. For a detailed
description of the refractivity formulas (Smith-Weintraub and Thayer formula) cf. Section 3.5.2.

2.3.1 Refractivity Pro�les

Refractivity pro�les are derived as described above from the statistical optimized bending angle
�. This is the retrieval product which is used within the assimilation framework. For data quality
reasons only data processed with the IGAM/ECMWF retrieval scheme below 35 km and above 5
km is used. At that altitude (35 km) the in�uence of the initialization on the retrieved refractivity
is expected to be small enough, to pose no major problem.

2.3.2 Temperature Pro�les

The dry temperature TDry can then be derived from Eq. 37 or Eq. 38 by neglecting the e¤ect of
water vapor (ignoring the wet terms, k1 empirical constant cf. Section 3.5.2)

N = k1 �
pA
TDry

, (12)
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which is valid in the mid- to upper troposphere and stratosphere. If the temperature is below
250 K, the temperature error caused by a 50% error of the water vapor climatology is less than
1 K [Kursinski et al.(1996)]. So the assumption of a dry atmosphere can be expanded down to
the ground at high latitudes beginning from the subpolar regions on. If this assumption does not
hold, a priori information about the humidity below � 7 km is necessary to solve the ambiguity.
Assuming a dry atmosphere, using Eq. 12 and introducing the ideal gas law

pA =
�ATDryRDry

mA
, (13)

where �A denotes the dry air density, TDry the dry air temperature, RDry the universal gas constant
for dry air, pA the dry air pressure and mA the mean molar mass of dry air, it follows with the
use of Eq. 12

�A =
mA

k1RDry
�N , (14)

what means that the density of air is directly proportional to the refractivity and thus can be
derived directly. If the vertical air density �(z) is known the vertical pressure can be derived using
the equation of hydrostatic equilibrium

dpA(z) = �g(z)�A(z)dz , (15)

and integration over z

pA(z) =

Z 1

z

g(z0)�A(z
0)dz0 .

A second application of Eq. 13 allows to derive the vertical pro�le of the dry temperature TDry

TDry = k1
pA(z)

N(z)
(16)

2.3.3 Humidity Pro�les

To derive humidity pro�les a priori information about the humidity is necessary to resolve the
ambiguity. An iterative procedure to calculate speci�c humidity pro�les works as follows:

1. Assumption of dry atmosphere
q(z) = 0: (17)

2. Calculation of the virtual temperature pro�le

Tv(z) = T (z) � (1 + 0:608 � q(z)) . (18)

3. Calculation of the pressure pro�le as in Eq. 24

p(z) =
T (z)2

c2
�
�
n(z)� 1� c1 �

p(z)

T (z)

�
; (19)

4. Calculation of the speci�c humidity pro�le

q(z) =
0:622 � pw(z)

(p(z)� 0:378 � p(z)) . (20)

With the calculated q(z) the iteration starts again at step 2; the procedure converges fast
[Gorbunov and Sokolovskiy(1993)]. An other approach would be a 1D-Var procedure to
determine the most likely state of the atmosphere taking background information into account
[Healy and Eyre(2000)].
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2.3.4 Geopotential

The geopotential height pro�le can be computed corresponding to a given geometric height pro�le.
The (geodetic) latitude dependence of gravitation weighted by gE q u

g0
is needed and calculated as

factor

gfact =
gEqu
gMean

+
0:00531

gMean
� sin

�
'
j

�2
. (21)

To calculate the geopotential height the relation

dZ =
g

g0
dz (22)

is used. The geopotential height is calculated from the geometric height by integration

Z(z) =

znZ
z1

�
rMean

rMean +
1
2 � h(z0)

�2
� gfact � h(z0)dz0 . (23)

2.3.5 Pressure

Eq. 24 describes the calculation of dry pressure pA(z) which is equal to the atmospheric pressure
if humidity pW (z) can be neglected, i.e., everywhere above the lower to middle troposphere

pA(z) =
Md

k1R
�
1Z
z

g(z0) �N(z0)dz0 . (24)

2.3.6 Total Electron Content

For the ionosphere, phase changes measured with a dual band GPS receiver can be used to calcu-
late electron density pro�les. This speci�c data product is especially valuable for Space Weather
applications [Jakowski et al.(2004)Jakowski, Heise, Wehrenpfennig, and Tsybulya].

2.4 The CHAMP Satellite
The CHAMP satellite was launched from the COSMODROM at Plesetzk, � 800 km North of
Moscow, at the 15 July 2000, 12:00 UTC on-board a COSMOS-3B launcher. The initial orbit
was nearly circular (" = 0:004) at a height of 454 km and an inclination of 87.3�. Due to the
atmospheric drag the orbit height is decreasing approximately 50 to 200 m/day, depending on the
solar activity. The TRSR-2 (Black Jack) receiver used for the RO experiment is a key component
of the science payload and serves several purposes onboard CHAMP [Reigber et al.(1995)Reigber,
Schwinzer, and Kohlhase], [Wickert et al.(2002)Wickert, Schmidt, Marquardt, Reigber, Neumayer,
Beyerle, Galas, and Grunwald ], [Wickert et al.(2001)], [Reigber et al.(2003)Reigber, Lühr, and
Scheintzer ].

3 Assimilation System Setup

The system is implemented as a 3D-Var scheme using control space transformations (projection
from model levels onto the weighted eigenvectors of the vertical component of the background error
covariance matrix) and recursive �lters (to represent the horizontal component of the background
error covariance matrix). The dimensions of the background are �exible, but due to the speci�c
application a GCM compliant N48 Gaussian grid corresponding to, 96 latitudes � 192 longitudes
comprising 60 model levels is used.
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Figure 3: Artist view of the CHAMP satellite in orbit (courtesy GFZ Potsdam, NASA picture archive,
2004)

3.1 Coordinate System
As mentioned above a GCM compliant N48 Gaussian grid i.e. 96 latitude � 192 longitude,
comprising 60 model levels is used. The vertical coordinate system is derived from the surface
pressure and the A and B vectors provided by ECMWF. This vertical grid comprises 60 hybrid
levels. From this basic vertical coordinate system grids of geopotential height and geometric height
(over reference ellipsoid) can be derived. The assimilation scheme can be used either with geometric
height or geopotential height. The necessary operators are discussed later within this Chapter.

3.2 Temperature, Speci�c Humidity and Surface Pressure Analysis
The assimilation scheme directly updates the temperature, speci�c humidity, and surface pressure
input �elds, meaning that all �elds are interpolated separately. At each iteration the new vertical
�elds (like pressure, geopotential and height grid) have to be derived from the updated surface
pressure �eld. That means that the whole vertical coordinate system is shifted up and down during
the optimization process. That implies the necessity to calculate the interpolation coe¢ cients for
the background �elds at observation location at every cycle (simulation) before the refractivity
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can be derived. After comparison of background refractivity (also denoted as model observation)
and observation the gradients of the input �elds and observations are calculated and a suitable
correction is applied.

3.3 Variational Assimilation 3D-VAR
The solution of the minimization problem can be performed either in terms of full-�elds J(xa)
or the analysis of increments J(xa) = J(�xa = xa � xb) [F. Bouttier(1999)]. The latter solution
method provides optimal analysis increments, which are added to the unmodi�ed background �eld.
This procedure has a number of advantages like the use of linearized control variable transforms
which allow the straightforward use of adjoints to calculate the gradient of the cost function [Barker
et al.(2004)Barker, Huang, Guo, Bourgrois, and Xiao]. Another advantage is that any imbalance
introduced through the analysis procedure is limited to the small increments which are added to
the balanced �rst guess. Since the system doesn�t know that negative humidities are physically
not existing they occur during the minimization cycles. It is taken care of these values by setting
them to 10�12 and the corresponding gradients to 0.

3.3.1 3D-VAR and Incremental 3D-VAR

3D-VAR uses observations and background information in a statistical optimal way to derive
combined analysis �elds. The principal formulation is as follows:

xa = Argmin J(x) (25)

J(x) = Jb(x) + Jo(x) (26)

J(x) =
1

2

n
(x� xb)T B�1 (x� xb) + (y �H(x))TR�1(y �H(x))

o
(27)

5Ja = B�1(x0 � xb) +HTR�1[H(x0)� y] = 0: (28)

The Solution of the minimization problem requires the calculation of the gradient 5Ja and can
be performed either in terms of full �elds x or in terms of an analysis of the increments �x :

J(�x)=J(�x = x� xb) (29)

J(x) =
1

2

�
�xTB�1�x+ (H(�x)� d)TR�1(H(�x)� d)

	
(30)

d = y �H(xb) (31)

5J = B�1�x+HTR�1H(�x)�HTR�1d (32)

where the analysis is found by adding the �nal increment to the �rst guess:

xa = xb + �xa (33)

x is the atmospheric state vector containing the control variables, xa the updated state vector
at convergence, Jb(x) and Jo(x) are the background cost function respectively observation cost
function, rJa the gradient at convergence, H the potentially non-linear observation operator, H
the linear approximation (tangent linear operator) ofH,HT the adjoint operator, y the observation
vector, R and B are the observation respectively background covariance matrices.

3.4 Implementation Technique

3.4.1 Control Variables

The control variables used in the analysis are temperature, speci�c humidity and surface pressure.
To avoid negative speci�c humidities in the analysis the �eld is checked for negative values at every
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iteration, which are corrected to a value of 10�12 , the corresponding gradients are set to 0. The
cross correlations between the control variables are assumed to be small enough to be neglected.
This assumption serves to e¤ectively block-diagonalize the background error covariance matrix.
For each control variable there still remains both, horizontal and vertical correlations. These are
assumed to be separable, which is a widely used simpli�cation.

3.4.2 Minimization

The cost function is minimized by using an iterative descent algorithm, which is in our case the
L-BFGS-B routine. The cost of the analysis is proportional to the number of cost function and its
gradient evaluations, denoted as simulations. If a new state x is found, an iteration is performed,
which means that to �nd a new state x, several simulations may be required (cf. Section 3.11).

3.4.3 Preconditioning

A preconditioning of the problem is performed as part of the control space transformations (cf.
Section 3.9), a good paper on preconditioning is [Zupanski(1993)].

3.4.4 The Adjoint Technique

The adjoint technique allows to calculate the gradients, needed for the minimization procedure, at
reasonable numerical cost [INRIA(2002)].

3.5 Observation Operators

3.5.1 Interpolation Operator

To calculate the background values at the spatial location of the measurements two bilinear hori-
zontal and one logarithmic vertical interpolation are performed for each observation.

Horizontal Interpolation The bilinear interpolation consists of a weighted average of the four
surrounding grid points to determine their interpolated value. Two linear interpolations on opposite
sites are performed followed by a consecutive interpolation of these intermediate results. This
horizontal interpolation is performed for the atmospheric layer above and below the observation

f(x; y) = (1� u)(1� v)fi;j + u(1� v)fi+1;j + (1� u)vfi;j + uvfi+1;j+1 , (34a)

u =
(x� xi)
(xi+1 � xi)

, (34b)

v =
(y � yj)
(yj+1 � yj)

, (34c)

where xi < x < xi+1 and yj < y < yj+1.

Vertical Interpolation Due to the fact of a globally non uniform vertical grid, the heights of
the horizontal interpolated values are also calculated by bilinear interpolation from the vertical
background grid.
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Linear and Logarithmic Interpolation Given the background value above and below the spa-
tial location of the observation either a logarithmic or a linear interpolation is performed to get
the �nal value of the background at the location of the observation.

Linear Interpolated Value = Z1 �Weight1 + Z2 �Weight2 (35)

Logarithmic Interpolated Value = e(log(Z1)�Weight1)+(log(Z2)�Weight2) (36)

where Z1 and Z2 denote the horizontal interpolated values of the layers above and below the
observation which are weighted with Weight1 and Weight2, calculated from the vertical distance
between observation and Z1, Z2. Temperature is linear interpolated, for speci�c humidity and
pressure a logarithmic interpolation is used.

3.5.2 Refractivity Operator

To calculate the refractivity at a given point, it is necessary to know the atmospheric variables
absolute temperature, speci�c humidity and pressure. There are two standard formulas used, which
are the Thayer and the Smith-Weintraub formula. The Thayer Formula is the more accurate one,
the Smith-Weintraub formula is basically the same, but assumes an ideal gas.

Thayer Formula

N = k1 �
pA
T
� 1
zA
+ k2 �

e

T
� 1
zW

+ k3 �
e

T 2
� 1
zW

(37)

Smith-Weintraub Formula

N = k1 �
pA
T
+ k2 �

e

T
+ k3 �

e

T 2
(38)

N = Refractivity [ ]
T = Absolute Temperature [K]
e = Partial pressure of water vapor [hPa]
pA = Pressure of �dry Air� [hPa]
zD = Compressibility factor of �dry Air� [ ]
zW = Compressibility factor of water vapor [ ]
k1 = Empirical constant Thayer Formula [K/hPa]
k2 = Empirical constant Thayer Formula [K/hPa]
k3 = Empirical constant Thayer Formula [K2/hPa]

Table 3: Parameter and Variables used in Thayer & Smith-Weintraub formula.

Further explanations of the parameters and their respective values cf. Appendix B.

Calculation of Refractivity Fields from ECMWF Fields Given the �elds of temperature, surface
pressure and speci�c humidity (in our case derived �elds from ECMWF�s ERA40 data), we can
calculate the �eld of refractivity using either the Thayer or Smith Weintraub- formula. A com-
parison of the two formulas shows no signi�cant di¤erences. A simpli�ed version of the Smith
Weintraub - formula was chosen as forward operator, to calculate refractivity from temperature,
humidity, and pressure analysis �elds, the latter derived from the surface pressure.
Fig. 5 shows the negligible di¤erence concerning our application of the mean global refractivity

pro�le calculated with the Thayer and the Smith Weintraub formula using an ECMWF T42L60
analysis �eld (Date: 2003.01.03; 12 UTC).
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Figure 4: Mean global refractivity pro�le calculated from T42L60 ECMWF analysis �elds.

The use of a simple formulation to calculate refractivities is justi�ed within this framework so
the refractivity forward operator can be written as:

N = k1 �
pA
T
+ k3 �

e

T 2
. (39)

This simple formulation is generally accepted and introduces no signi�cant errors. Further we need
the partial pressure of water vapor e which is given by

pW =
MW

MD
, (40)

e =
q � p

pW + (1:0� pW ) � q
, (41)

where e denotes the water vapor pressure, MW , respectively MD the molecular mass of water
vapor and dry air.

3.5.3 Vertical Coordinate Operator

As can be seen in Eq. 37 and Eq. 38 the pressure at the location of the observation is needed to
calculate the refractivity. ECMWF provides temperature, speci�c humidity, and surface pressure
�elds. The background pressure �eld is derived by a series of operators. These operators are
also used to set up the vertical coordinate system of the assimilation scheme either as a vertical
grid of geopotential heights or a vertical grid of geometric heights. Since the pressure �eld is
also derived, pressure coordinates are possible but not implemented at the moment. The values
of temperature Ti;j;z and speci�c humidity qi;j;z; are given for the Gaussian grid of the latitudes
'j and the homogenous grid of the longitudes �i, and an irregular spaced height grid zi;j;z. For
the N48 Gaussian grid the index ranges are i =1...96, j = 1...192, and z = 1...60 for full level
quantities and z =0...60 for half level quantities. Here and in other parts of this report z simply
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Figure 5: Di¤erence in global mean refractivity calculated with Smith-Weintraub and Thayer Formula.

denotes the height coordinate wether if it is geometrical height or geopotential height, but further
on in this Section z denotes geometrical height and � geopotential height. The vertical index of
all quantities is always denoted as z. Coordinates are geocentric except denoted otherwise. The
pressure corresponding to the zth half and full levels are calculated by the means of formulas, e.g.,
[Roeckner et al.(2003)]

Pi;j;z+ 1
2
= Az+ 1

2
+Bz+ 1

2
� PSurfi;j , (42)

Pi;j;z =
1

2

�
Pi;j;z+ 1

2
+ Pi;j;z� 1

2

�
, (43)

where Psurfi;j denotes the surface pressure at the ith longitude and the jth latitude. The Az+ 1
2

and Bz+ 1
2
are the vertical coordinate parameters provided by ECMWF. The calculation of the

geopotential heights is based on the hydrostatic equation and on an interpolation between the half
and the full levels [Gorbunov and Kornblueh(2003)]

�
i;j;z+1

2

� �
i;j;z� 1

2

= RDryTv;i;j;z � ln
 
Pi;j;z+ 1

2

Pi;j;z� 1
2

!
, (44)

�
i;j;zmax+

1
2

= �
i;j;zS u r f

, (45)

�
i;j;z

= �
i;j;z+1

2

+ �i;j;z �RDryTv;i;j;z , (46)

�i;j;z = Ln(2) for z = 1 , (47)

�i;j;z = 1�
Pi;j;z� 1

2

Pi;j;z+ 1
2
� Pi;j;z� 1

2

� Ln
 
Pi;j;z+ 1

2

Pi;j;z� 1
2

!
for z > 1 , (48)

where Tv denotes the virtual temperature as de�ned in Eq. 18 and �Surf is the surface geopotential
which is equal the orography. The geometrical heights over reference ellipsoid is calculated from
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the geopotential heights by the approximate formula from the US Standard Atmosphere:

R0 =
2 � 10�3 � gSurfi;j

3:085462 � 10�6 + 2:27 � 10�9 � cos(2'j)� 2 � 10�12 � cos(4'j)
, (49)

zi;j;z = R0 �
�i;j;z �

�
gMean � �i;j;z

�
gSurfi;j �R0

, (50)

where R0 denotes the e¤ective Earth�s radius, gMean the mean gravity acceleration and gSurfi;j the
local gravity acceleration on the surface. gSurfi;j itself is calculated by the International gravity
formula plus standard z dependence:

gEquator = 9:7803 m/s
2 (51)

gSurfi;j = gEquator �
�
1 + 0:00531 � sin

�
'Geodeticj

�2�
, (52)

�nally the standard height dependency of gSurfi;j is calculated

RMean = 6371:0 [km] , (53)

fgz =

�
RMean

RMean + z

�2
, (54)

gSurfi;j ;z = gSurfi;j � fgz , (55)

gEquator is the gravity acceleration at the equator and RMean the mean Earth�s radius.

3.6 Observation Error Covariance Matrix
The observation error covariance matrix takes only vertical correlations within a pro�le into ac-
count. Due to the separation in space and time between the di¤erent RO events this assumption
is justi�ed.

3.6.1 Formulation of the Observation Error Covariance Matrix

A simple error covariance matrix formulation was deduced from empirically estimated matrices
[Steiner(2004)], [Kirchengast et al.(2006)Kirchengast, Foelsche, and Steiner ] (not latitude depend-
ent). A least square method was used to �t analytical functions to the relative standard deviation
which shows a di¤erent behavior below and above the tropopause height. The empirical relative
standard deviation can be approximated with an exponential increase above the upper tropo-
sphere/lower stratosphere region between about 14-20 km, where it is closely constant, and with
a decrease from near 14 km downwards proportional an inverse law. To be able to scale the error
magnitude, which is receiver dependent, the standard deviation in the upper troposphere/lower
stratosphere domain (sutls) can be tuned. Eq. 56 gives the analytical functions for the relative
standard deviation sz over all altitude domains, where z denotes the height, zTropotop the top level
of the "troposphere domain", zStratobot the bottom level of the "stratosphere domain" and HStrato
which is the scale height of the error increase over the stratosphere [Steiner and Kirchengast(2004)].

sz =

8>><>>:
sutls + s0 �

h
1
zp �

1
zTro p o t o p

i
; for 2 km < z � zTropotop

sutls; for zTropotop < z � zStratobot
sutls � exp

h
z�zS t r a t o b o t
HS t r a t o

i
; for zStratobot < z � 50 km

. (56)

To be able to derive the error covariance matrix the correlation length L(z) has to be determined.
The best values for L(z) are 2 km within the troposphere (up to ~15km) and a linear decrease of
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L(z) above the troposphere to 1 km at 50 km altitude. The observation error covariance matrix S
can now be described as:

S = Sij = si � sj � exp
�
�jzi � zj j

L(z)

�
(57)

This formulation of the observation error covariance also accounts for the error of representat-
iveness, so there is no additional speci�cation within the assimilation framework necessary. The
values which are currently used for CHAMP data are:

sutls : 0.5%
s0 : 4.5%
zStratobot : 20 km
zTropotop : 14 km
HStrato : 15 km
p : 1.0
L(z); 15 km � z : Linear decrease to 1 km at 50 km
L(z); 2 km � z � 15 km: 2 km

Table 4: Parameter and Variables used in formulation of observation error covariance matrix formula.

Figure 6: Relative refractivity standard deviation based on the presented formulas and parameters.
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3.7 Incest Problem
The assumption that there is no correlation between background and observation errors is usually
justi�ed, since the causes of the errors are supposed to be completely independent. However, one
must be careful about observation preprocessing, like retrieval procedures, which use background
information. These procedures can cause a bias of the observations towards the background. If
observations, containing background information are used in an assimilation procedure, we are
confronted with the so-called incest problem. The analysis is drawn closer to the background than
justi�ed, which is caused by observations already containing background information, reducing the
apparent background departures. If auxillary information is necessary in the observation prepro-
cessing procedure, one should carefully decide, which additional information will not in�uence the
analysis result. The analysis is only optimal if the assumption of bias-free observations holds. In
practice background and observations are often signi�cantly biased. If the biases are known, they
can be subtracted from the background and observations, which is in practice a delicate problem.
Bias monitoring and removal are subjects of ongoing improvement and research.

3.8 Background Error Covariance Matrix
As a suitable time frame to generate �rst guess �elds from ERA40 monthly mean data the years
1980 to 2000 (21 years) have been chosen. This time covers a period of increasingly and lately
massive use of satellite observations, improving the analysis over remote and data sparse areas
like the southern hemisphere signi�cantly. These monthly mean �elds are averaged separately
for the four 6 hour time windows around 00,06, 12 and 18 UTC. For this data set the monthly
mean variances of the used atmospheric parameters (temperature, speci�c humidity and surface
pressure) are available too.
The approach to use these variances is somewhat sound, problems occur concerning the correl-

ation matrices, since they are not readily available, they had to be derived. The background error
covariance matrices are composed of global mean horizontal and vertical correlation structures and
the three dimensional respectively two dimensional (for surface pressure) variance �elds.
The vertical part of the control space transformation is based on positive de�nite vertical

background covariance matrices (in general covariance matrices have to be positive de�nite by
de�nition).

3.8.1 Variances

For this ERA40 data set the monthly mean variances of the used atmospheric parameters (tem-
perature, speci�c humidity and surface pressure) are available directly from the MARS system and
calculated as follows:

avar =
1

k � 1

n=kX
n=1

(an � ba)2 (58)

where k denotes the number of days, avar the monthly mean variance of a parameter, a the
daily analysis value and ba the corresponding monthly mean. Since monthly mean error patterns
are not available this daily variations compared to the monthly mean had been used to derive a
proxy which is referred to as error from now on.

3.8.2 Calculation of Vertical Correlation Matrices

The vertical correlation matrices are calculated from a subset of the used 21 years period, namely
from the years 1980, 1985, 1990, 1995 and 2000 under the assumption of "true" daily analysis �elds
which are compared with the monthly mean analysis2 . First the vertical error covariance matrix

2Personal communication Mike Fisher 2006
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B is computed from the di¤erences �xn between the monthly mean and the true values as wich
the daily analyses serve, for the k vertical levels.

B =

�
1

k � 1

� n=kX
n=1

(�xn)(�xn)
T (59)

The diagonal elements of B represent the variances (Bii) at vertical level i; with its non-diagonal
elements representing the covariances (Bij) between the vertical levels i and j. From B the error
correlation matrix C with its elements Cij denoting the error correlations between �xi at level i
and �xj at level j can be derived. C is �nally calculated by dividing the covariance Bij by the
square root of the product of variances Bii and Bjj .

C with Cij =
Bijp
BiiBjj

(60)

During calculation of the �x using the "true" daily analysis �elds which are compared with the
monthly mean analysis it turned out that some values of the daily analysis �elds had been identical
with the corresponding values of the monthly mean analysis (�x = 0). That has been true for
temperature, speci�c humidity and surface pressure, a fact that seems to be odd. During coding
of the program to derive the horizontal correlation (cf. 3.8.3) a bug was found concerning the
mentioned problem. If �x = 0, numerical problems occur, in that case �x has to be set to a small
value, but due to an implementation bug not only the respective value but the whole column has
been set to a small value. Tests within the horizontal correlations framework showed no signi�cant
impact with and without the bug due to the averaging procedures. Since there are signi�cantly
more values averaged in the calculation of the vertical correlation matrices than in the horizontal
test case the occurrence of the bug can be seen as negligible without any real impact on the result.
The same averaging procedure as used for the �rst guess �elds (separate averaging of the four

time layers of monthly means over 21 years) had been applied to derive the variances of the control
variables. To calculate the vertical correlation matrices the averaging procedure included all four
time layers otherwise it had been applied the same way as in the variance case, just restricted to
the years 1980, 1985, 1990, 1995 and 2000, separated for 5 latitude regions. Individual correlation
matrices for northern high latitudes NH (0� - 30�), northern mid latitudes NM (30� - 60�) low
latitudes LO (60� - 120�), and the respective southern counterparts (SM, SH) had been derived
and are used within the assimilation scheme.

3.8.3 Calculation of Horizontal Point to Point Correlations

To calculate horizontal point to point correlation the following equations could be used

c1 = c11 = 1 (61)

ci =
1

i
(C12 +C23 + :::+Cii+1)

ci =
1

i

Dim(C)�1X
i=1

Cii+1

i = 1::Dim(C)

which in principal is an averaging of the diagonal and o¤ diagonal elements of a correlation
matrix (the averaging of the diagonal elements always equals 1). This procedure gives a rough
estimate of the horizontal correlation patterns. Bear in mind that the number of averaged correlated
grid points is reduced by distance (meaning that the averaged number is reduced by one for
stepping one point ahead, since in fact the diagonal and o¤ diagonal elements of the correlation
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matrix are used). The correlation matrices themselves are derived by taking the grid points in east-
west direction for every single latitude by means of the equations used to calculate the vertical
correlation matrices (cf. 3.8.2) and subsequent averaging over the respective latitudes and all time
layers. Since we have a closed surface the correlations are expected to drop but increase again after
a while since the last grid point (as expressed in the matrix) is in fact next to the �rst one.
Another fact to be aware of is that the following plots showing these correlation patterns depict

the correlation as function of grid points not as function of distance! That implies that 192 grid
points represent a di¤erent distance for the high mid and low latitude plots (indicated by H, M,
L in the plots where N denotes the northern and S the southern hemisphere). One shouldn�t be
surprised by the strong correlation at high latitudes (temperature Figs. 7, 10 lower panels , speci�c
humidity Figs. 12 , 16 lower panels and surface pressure Figs. 20 upper panel and Fig. 22) since
the distance is much smaller than in the low latitude cases (temperature Fig. 9 lower panel, speci�c
humidity Fig. 14 lower panel and surface pressure Fig. 20 lower panel).
Alternatively the same procedure comprising the same data set has been applied in the north-

south direction meaning that the equations had been applied to every single longitude with sub-
sequent averaging as explained before. In this case we don�t have a closed surface (bands are
running from north to south pole) resulting in matrices of only half the dimension of the east-west
case. Since in this case the grid point distance is roughly equal and there are naturally no latitude
bands only global means are shown for temperature in Fig. 23 upper panel, for speci�c humidity
in Fig. 23 lower panel and for surface pressure in Fig. 24.
For this setup the grid point separation represents ~208 km, taking 20 to 30 grid points into

account (translating into a distance of 4160 to 6240 km) might be a good solution to describe the
horizontal correlation properties. Although this seems to result in quite broad correlations it might
be close to the truth of monthly mean �elds of this spatial resolution. Some corrections around
the high latitudes might be necessary to avoid numerical problems. These horizontal correlation
patterns have still to be tested in practice.
The quantities in the following �gures are averaged over latitude bands where 0

�
stands for the

NorthPole 180
�
for the South Pole or global means. In detail:

� 0� - 30� NH: Northern Heigh Latitudes

� 30� - 60� NM: Northern Mid Latitudes

� 60� - 120� LO: Low Latitudes

� 120� - 150� SM: Southern Mid Latitudes

� 150� - 180� SH: Southern Heigh Latitudes
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3.8.4 Vertical and Horizontal ECMWF Temperature Error Correlations Northern High
Latitudes 0� - 30� (NH)

ERA40 vertical temperature error correlation NH, L60.

ERA40 horizontal temperature error correlation NH.

Figure 7: Derived vertical and horizontal error correlations of ERA40 temperature �elds northern high
latitudes.
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3.8.5 Vertical and Horizontal ECMWF Temperature Error Correlations Northern Mid
Latitudes 30� - 60� (NM)

ERA40 vertical temperature error correlation NM, L60.

ERA40 horizontal temperature error correlation NM.

Figure 8: Derived vertical and horizontal error correlations of ERA40 temperature �elds northern mid
latitudes.
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3.8.6 Vertical and Horizontal ECMWF Temperature Error Correlations Low Latitudes
60� - 120� (LO)

ERA40 vertical temperature error correlation LO, L60.

ERA40 horizontal temperature error correlation LO.

Figure 9: Derived vertical and horizontal error correlations of ERA40 temperature �elds low latitudes.
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3.8.7 Vertical and Horizontal ECMWF Temperature Error Correlations Southern Mid
Latitudes 120� - 150� (SM)

ERA40 vertical temperature error correlation SM, L60.

ERA40 horizontal temperature error correlation SM.

Figure 10: Derived vertical and horizontal error correlations of ERA40 temperature �elds southern mid
latitudes.
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3.8.8 Vertical and Horizontal ECMWF Temperature Error Correlations Southern High
Latitudes 150� - 180� (SH)

ECMWF vertical temperature error correlation SH, L60.

ECMWF horizontal temperature error correlation SH.

Figure 11: Derived vertical and horizontal error correlations of ERA40 temperature �elds southern high
latitudes.
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3.8.9 Vertical and Horizontal ECMWF Speci�c Humidity Error Correlations Northern High
Latitudes 0� - 30� (NH)

ERA40 vertical speci�c humidity error correlation NH, L60.

ERA40 horizontal speci�c humidity error correlation NH.

Figure 12: Derived vertical and horizontal error correlations of ERA40 speci�c humidity �elds northern
high latitudes.
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3.8.10 Vertical and Horizontal ECMWF Speci�c Humidity Error Correlations Northern Mid
Latitudes 30� - 60� (NM)

ERA40 vertical speci�c humidity error correlation NM, L60.

ERA40 horizontal speci�c humidity error correlation NM.

Figure 13: Derived vertical and horizontal error correlations of ERA40 speci�c humidity �elds northern
mid latitudes.
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3.8.11 Vertical and Horizontal ECMWF Speci�c Humidity Error Correlations Low Latitudes
60� - 120� (LO)

ERA40 vertical speci�c humidity error correlation LO, L60.

ERA40 horizontal speci�c humidity error correlation LO.

Figure 14: Derived vertical and horizontal error correlations of ERA40 speci�c humidity �elds low latitudes.
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3.8.12 Vertical and Horizontal ECMWF Speci�c Humidity Error Correlations Southern Mid
Latitudes 120� - 150� (SM)

ERA40 vertical speci�c humidity error correlation SM, L60.

ERA40 horizontal speci�c humidity error correlation SM.

Figure 15: Derived vertical and horizontal error correlations of ERA40 speci�c humidity �elds southern
mid latitudes.
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3.8.13 Vertical and Horizontal ECMWF Speci�c Humidity Error Correlations Southern High
Latitudes 150� - 180� (SH)

ERA40 vertical speci�c humidity error correlation SH, L60.

ERA40 horizontal speci�c humidity error correlation SH.

Figure 16: Derived vertical and horizontal error correlations of ERA40 speci�c humidity �elds southern
high latitudes.
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3.8.14 Horizontal ECMWF Temperature and Speci�c Humidity Error Correlations Global
Mean

ERA40 vertical temperature error correlation global mean, L60.

ERA40 horizontal speci�c humidity error correlation global mean.

Figure 17: Derived vertical and horizontal error correlations of ERA40 speci�c humidity and temperature
�elds global mean.
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3.8.15 Zonal Mean Monthly Temperature and Speci�c Humidity Variance

ERA40 zonal monthly mean temperature variance.

ERA40 zonal monthly mean speci�c humidity variance.

Figure 18: Zonal mean of temperature and speci�c humidity ERA40 monthly mean variance �elds.
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3.8.16 Global Mean Monthly Surface Pressure Variance and Correlation

ERA40 global variance of surface pressure.

ERA40 error correlation of surface pressure global mean.

Figure 19: Global mean ERA40 surface pressure variance and respective derived horizontal correlation.
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3.8.17 Horizontal ECMWF Surface Pressure Error Correlations Northern High (0� - 30�) and
Mid (30� - 60�) Latitudes

ERA40 correlation of surface pressure NH.

ERA40 correlation of surface pressure NM.

Figure 20: Derived horizontal error correlations of ERA40 surface pressure �elds northern high and mid
latitudes.
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3.8.18 Horizontal ECMWF Surface Pressure Error Correlations Northern Low (60� - 120�)
and Southern Mid (120� - 150�) Latitudes

ERA40 correlation of surface pressure LO.

ERA40 correlation of surface pressure SM.

Figure 21: Derived horizontal error correlations of ERA40 surface pressure �elds low and southern mid
latitudes.
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3.8.19 Horizontal ECMWF Surface Pressure Error Correlations Southern High (150� - 180�)
Latitudes

ERA40 correlation of surface pressure SH.

Figure 22: Derived horizontal error correlations of ERA40 surface pressure �eld southern high latitudes.
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3.8.20 Horizontal ECMWF Temperature and Speci�c Humidity Error Correlations Global
Mean Derived along Bands of Constant Longitude from North to South Pole

ERA40 horizontal temperature error correlation global mean, L60.

ERA40 horizontal speci�c humidity error correlation global mean, L60.

Figure 23: Derived horizontal error correlations of ERA40 speci�c humidity and temperature �elds from
pole to pole global mean.
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3.8.21 Horizontal ECMWF Surface Pressure Error Correlation Global Mean Derived along
Bands of Constant Longitude from North to South Pole

ERA40 error correlation of surface pressure global mean.

Figure 24: Derived horizontal error correlation of ERA40 surface prssure �elds from pole to pole global
mean.

3.9 Control Space Transformations
The principles of 3D-Var are brie�y described in Sub Section 3.3. For a model state x with n
degrees of freedom minimization of the cost function is numerically costly [F. Bouttier(1999)] and
becomes prohibitively expensive for usual n0s. One practical solution to this problem is to perform
the minimization in a control variable space v given by

x =Uv .

The transform U has to be chosen in a way that

B =UUT , (62)

is approximately satis�ed. In the control space v the number of required minimization calculations
is reduced. Furthermore by using the transform Eq. 62, the background error covariance matrix
becomes Bc = I, hence e¤ectively preconditioning the problem. I denotes the identity matrix, Bc
the vertical background covariance matrix. In terms of increments the control variable transform
can be written as

�x =Uv .

The transformation
v =U�1�x
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can be speci�ed in di¤erent ways. The de�nition must provide a way to break down the atmospheric
state x into uncorrelated but physically realistic error modes which can be penalized in Jb according
to their estimated error magnitude.

3.9.1 Vertical Control Variable Transform

The vertical transform serves to project control variables from model levels onto the weighted
eigenvectors of the vertical component of the background error covariance matrix where the �v
represent the background departures from the true state of the atmosphere.

Bv = �v�Tv . (63)

Eq. 63 considers the vertical transformation of v at a single horizontal location. For practical
reasons approximations must be made like the use of climatological eigenvectors and eigenvalues
and the averaging over a geographical domain of these structures. At the moment �ve di¤erent
correlation matrices which are latitudinal means are used, and completely spatially dependent
standard deviations (cf. 3.8.2).

General Formulation of Uv The vertical component of the covariance matrix Bv is given as
K �K positive-de�nite symmetric matrix where K is equal the number of vertical levels. These
are properties which allow to perform an eigendecomposition

Bv = P
�1E�ETP�1 , (64)bBv = EbBvET .

The inner product P de�nes a weighted error b�v = P �v which might be used to allow for variable
model level thickness or introduce synoptic dependencies. In the current version this option is not
used. The columns of the matrix E are theK eigenvectors e(m) ofBv which obey the orthogonality
relationship,

EET = I .bBv denotes a latitude dependent domain-averaged Bv. The diagonal matrix � contains the K
eigenvalues �(m). With this standard theory it is possible to de�ne a transform Uv between
variables �x(k) on model levels k and their projection onto vertical modes m de�ned by

Bv=UvU
T
v . (65)

The comparison of Eq. 64 and Eq. 65 allows to derive

�x=Uvvv (66)

�x = P�1E�
1
2vv .

If Eq. 66 is inserted into the control variable space form of the background error cost function

Jb =
1

2
�xTB�1v �x ,

which gives

Jb =
1

2
vTv vv (67)

Jb =
1

2

X
m

vv(m)
2 ,

and for the gradient
5Jb = vv. (68)

As can be seen easily there are several e¤ects of the Uv transform:



48 3. Assimilation System Setup

� The projection onto uncorrelated eigenvectors of Bv leads to very signi�cant CPU savings as
can be seen via Eq. 67 in the calculation of the background cost function and in its adjoint
(gradient) calculations.

� The scaling by the square root of the eigenvalues �
1
2 (m) serves as preconditioning.

� The eigenvectors are ordered by the size of their respective eigenvalues what means �(1)
is the dominant structure and �(k) essentially contains low amplitude noise. This ordering
can be used to �lter vertical grid scale noise which reduces CPU still further by neglecting
small-scale eigenvalue structures, which contribute little to the total error.

Approximated Eigenstructures Assuming a single column model, with knowledge of the back-
ground covariance matrix and hence the eigenvectors and eigenvalues the Uv transform Eq. 66
is an e¢ cient means of reducing CPU without any loss of information. In reality the background
covariance matrix is not exactly known, so approximations have to be made. Furthermore our
application is 3D-Var were averaging is necessary compared to the 1D-Var case. At the moment
�ve di¤erent correlation matrices which are latitudinal means are used (cf. 3.8.2).

3.9.2 Horizontal Control Variable Transform

A recursive �lter (RF) is used to represent the horizontal component of the background error
covariance matrix. The implementation is based on the description of RF�s in [Lorenc(1992)].

3.9.3 Recursive Filters

RF Basic Algorithm The basic algorithm for a recursive �lter is quite simple. The RF is presented
with an initial function Aj at grid points j where 1 � j � J where the ��s are the �lter coe¢ cients.
Aj is the initial value at gridpoint i Bj is the value after �ltering from i = 1 to J , Cj is the value
after one pass of the �lter in each direction. A single pass of the RF consists of an initial smoothing
from left to right

Bj = �Bj�1 + (1� �)Aj for j = 1:::J , (69)

followed by another pass from right to left

Cj = �Cj+1 + (1� �)Bj for j = J:::1 . (70)

The application of the RF in each direction is performed to ensure zero phase change. So a 1-
pass �lter is de�ned as a single application of Eq. 69 and Eq. 70. A N -pass RF is de�ned by
N sequential applications. In fact the A0s are the values before and the C 0s the values after
application of the �lter.

RF Boundary Conditions Eq. 69 and Eq. 70 are used to compute recursively the RF response
at all points j = 2 : J � 1 interior to the boundary. Explicit boundary conditions are required to
specify the response at points j = 1 and J . If there is a limited area and thus a real boundary a
method of Hayden & Purser [Hayden and Lorenc(1995)] can be used to specify boundary conditions
which assume a given decay-tail outside the domain. This technique assures that the response to
observations near the boundary is equivalent to the response within the center of the domain. The
boundary conditions for B1 and CJ+1 depend on the particular number of passes p of the �lter in
opposite directions. Assuming no previous pass of the left moving �lter (p = 0) we have

B1 = (1� �)A1 . (71)

Following one pass of the �lter in the opposite direction the p = 1 boundary condition is

(CJ ; B1) =
1� �

(1� �2)2
�
(BJ ; A1)� �3(BJ�1; A2)

�
. (72)



3.9. Control Space Transformations 49

Hayden & Purser [Hayden and Lorenc(1995)] suggest to use the p = 2 boundary condition also
for p > 2. In our application there is no real boundary but the "boundary conditions" for B1 and
CJ+1 still have to be de�ned

B1 = �AJ + (1� �)A1 , (73)

and
CJ = �B1 + (1� �)BJ . (74)

Handling of Boundary Conditions Since the �lter runs from a grid point 1 to a grid point n and
returns it is well suited for areas with de�ned borders. The boundary conditions can be speci�ed
and are a function of the number of �lter passes. In our case we operate on a closed surface so
information must be transferred from grid point n to grid point one and vice versa. The solution
found doubles the number of �lter operations, which can be handled without problems due to the
numerical properties of the �lter procedure. The approach can be explained with a simple graphical
representation. Fig. 25 shows a latitude or longitude band divided into four equal elements.

Figure 25: Segments along one lattitude or longitude band in original order.

To be able to transfer information from A to D and vice versa the �lter procedure is applied a
second time to a shifted arrangement of boxes:

Figure 26: Shifted arrangement of segments along one lattitude or longitude band.

After the second �ltering process the original order of the boxes is reconstructed using the two
middle segments from both �ltering runs, respectively B and C from the original order and D and
A from the shifted version. As can be seen, this approach ensure a smooth transition between the
boxes A and D.

Matching of RF Output and Analytical Functions The smoothing operations performed by the
RF algorithm are related to certain analytical functions. In particular, for N = 2, the RF output
approximates a second order autoregressive (SOAR) function

�s(r) =
�
1 +

r

s

�
e�

r
s . (75)

In the limit N !1 it can be shown that the RF output tends to a Gaussian function

�g(r) = exp

�
�1
2

� r
2s

�2�
(76)
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where r is the distance at which we want to know the correlation and s is a characteristic length
scale which in fact controls the width and is related to the FWHM (Full Width at Halve Maximum).
The � is calculated as

�

(1� �)2
=

1

2E
, (77)

where

E =
N(4x)2
s2

. (78)

The de�nition of E is in this particular case the same for the SOAR and the Gaussian function.
This arises from the particular scaling of the Gaussian function given by equation 76. 4x denotes
the grid spacing, N and s are also known parameters, thus E can be calculated from Eq. 78. �
can be calculated as follows

� = 1 + E �
p
E(E + 2) . (79)

This approach is matching the large-scale response of the RF to that of a SOAR for N = 2 and
approaches that of a Gaussian for increasing N . The matching of the large scale response to
analytical SOAR and Gaussian functions serves the de�nition of � via Eq. 79. It is also required
that the RF conserves the background error variance, for the zero distance case. The calculation of
this scaling factor S is realized as the inverse of the zero distance response of a 1D N - pass RF to a
delta function. A two dimensional N - pass RF is realized by performing N applications of multiple
1D RF�s in one direction followed by the multiple application of 1D RF�s in the orthogonal direction.
� and E are calculated in the same way as in the 1 dimensional case, however the RF output has
to be scaled by S2 instead of S which is de�ned as in the one dimensional case [Lorenc(1992)].

Transform to Non Dimensional Space The two dimensional �eld is transformed to a non dimen-
sional space prior to the �lter procedure. This transform is realized as an inner product which is
de�ned as

Increment in Control Spacep
Grid Box Area

. (80)

The grid box area is calculated by subtracting fractions of ellipsoid areas between the equator and
the pole and subsequent division by the number of longitudes. The ellipsoid (WGS84) areas are
calculated by

Ellipsoid Area = 2� (rEquator + z)
2 � (0:996647190 � sin(Lat)� 0:001116660 (81)

sin(3:0 � Lat) + 1:68880838�6 � sin(5:0 � Lat)� 2:70005436�9

sin(7:0 � Lat) + 4:41731436�12 � sin(9:0 � Lat)) ,

where z denotes the height over the reverence ellipsoid [Lauf (1983)].

RF Representation of Background Error Covariances The control variable transform uses the
identity

B = UUT , (82)

to de�ne a transform �x = Uv which relates preconditioned control variables v to analysis incre-
ments �x in model space. The horizontal component Uh de�ned by

Bh = UhU
T
h , (83)

is realized by scaled recursive �lters where Bh is the horizontal part of the background covariance
matrix B (size: (number of latitudes � number of longitudes) � (number of latitudes � number of
longitudes)). The RF has to be applied in a non dimensional space

bv = F 1
2v ,
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where the scaling factors F contains the grid box area as described above. The relation between
model and non dimensional space background error covariance matrix bB is given as

Bh = F
� 1
2 bBhF� 1

2 . (84)

The comparison between Eq. 82 and Eq. 84 indicates that the horizontal component of the control
variable transform Uh relating model space control variables v to model space analysis variables
x via x = Uhv can be represented by using a recursive �lter bR in non dimensional space as

�x = �bF
� 1
2 bRF 1

2v . (85)

When the two dimensional recursive �lter bR is applied, only N
2 passes are performed, as indic-

ated in Eq. 83 the other N
2 passes are performed by the adjoint transform [Barker(1999)].

3.10 Horizontal Background Error Covariances
The horizontal correlations are functions of point to point separation which follow roughly the
characteristics of the global mean horizontal error correlations in use at ECMWF within the IFC
framework in operational use 2003. An alternative which is more suited and possible ways to derive
it have been presented in 3.8.3, a description which follows roughly the method which has been
used to derive the vertical correlations (cf. 3.8.2).
As recursive �lters approximate analytical functions it naturally occurs to be di¢ cult to match

them with statistically derived correlation functions. Nevertheless it is possible to archive a quite
good agreement with the ECMWF provided horizontal correlations. To take the di¤erent grid
point distances into account (nearly constant along the latitudes, getting smaller toward the poles
along the longitudes), the �lter coe¢ cients are calculated separately along the latitude, longitude
directions. The following plots show the horizontal correlation characteristics expressed by recurs-
ive �lters. As can be easily seen the correlation patterns agree qualitatively with the structures
presented in 3.8. The �t can be even more perfect, one just has to optimize the characteristic
length scale for every single vertical level by hand. The level of accuracy reached here is adequate
for these assimilation experiments.
The plots Fig. 27 and Fig. 28 show the ECMWF provided mean correlation patterns for

temperature and speci�c humidity and their by �lters approximated counterparts. Fig. 29 depicts
in addition the �lter approximations using a correlation length of the original pattern times two.
Fig. 30 shows the �lter approximation of the surface pressure correlation and the corresponding
approximation using the original correlation length pattern multiplied by a factor of two. The
original ECMWF correlation structure is shown in Fig. 31.
The same procedure could be also applied to horizontal correlation derived as presented in

3.8.3. The �lter correlation lengths could be equally tuned to approximate these more appropriate
correlation patterns by the use of RF�s.
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3.10.1 Horizontal Global Mean ECMWF Temperature Correlations and its Approximation by
a Recursive Filter

ECMWF horizontal global mean temperature error correlation.

ECMWF horiz. gl. mean temperature corr. approximated by a recursive �lter.

Figure 27: Global mean horizontal error correlations of ECMWF temperature �elds and corresponding
�lter approximation.
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3.10.2 Horizontal Global Mean ECMWF Speci�c Humidity Correlations and its Approxima-
tion by a Recursive Filter

ECMWF horizontal global mean speci�c humidity error correlation.

ECMWF horiz. gl. mean spec. humi. corr. approximated by a recursive �lter.

Figure 28: Global mean horizontal error correlations of ECMWF speci�c humidity �elds and corresponding
�lter approximation.
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3.10.3 Horizontal Global Mean ECMWF Temperature and Speci�c Humidity Correlations
Approximated by a Recursive Filter Times Two

Filter approximation of temperature error correlations 2x.

Filter approximation of speci�c humidity error correlations 2x.

Figure 29: Global mean horizontal error correlations of ECMWF temperature and speci�c humidity �elds
and corresponding �lter approximation times two.
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3.10.4 Horizontal Global Mean ECMWF Surface Pressure Correlations Approximated by a
Recursive Filter and the Respective Approximation Times Two

Filter approximation of the global mean surface pressure correlation.

Filter approximation of the global mean surface pressure correlation 2x.

Figure 30: Global mean horizontal error correlations of ECMWF surface pressure �elds approximated by
a recursive �lter and the respective approximation times two.



56 3. Assimilation System Setup

3.10.5 Horizontal Global Mean ECMWF Surface Pressure Correlation

Global mean ECMWF horizontal error correlation of surface pressure.

Figure 31: Global mean horizontal error correlations of ECMWF surface pressure �elds approximated by
a recursive �lter and the respective approximation times two.

3.11 The Minimization Algorithm
The L-BFGS-B algorithm is a limited memory algorithm (L) for solving large nonlinear optimiz-
ation problems subject to simple bounds on the variables. It is based on the Broyden-Fletcher-
Goldfarb-Shanno Method (BFGS), which is from the class of Quasi-Newton methods, the most
common. BFGS uses the following basic update for Ai

Ai+1 = Ai +
sis

T
i

sTi vi
+
Aiviv

T
i

vTi Aivi
+
�
vTi Aivi

�
� uiuTi , (86)

with

ui =
si
sTi
� Aivi
vTi Aivi

, (87)

where si = xi+1 and vi = 5 fi+1 � 5 fi. For a symmetric positive de�nite matrix Ai the
matrix Ai+1 is also symmetric positive de�nite, and thus the Quasi-Newton condition is ful�lled.
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This version was chosen to be able to apply simple bounds within the assimilation framework
(denoted by the B). This option is currently not used. It is intended for problems in which
information on the Hessian matrix is di¢ cult to obtain or for large dense problems. L-BFGS-B
can also be used for unconstrained problems, as currently in our application, and in this case
performs similarly to its predecessor algorithm L-BFGS (Harwell routine VA15). The algorithm
is implemented in Fortran 77 [Byrd et al.(1994)Byrd, Peihuang, Nocedal, and Ciyou], [Dong and
Nocedal(1989)] the basic input is current function values and the respective gradients.

4 Data Preprocessing

Since the RO data products consist of pro�les with a vertical resolution (300 - 400 observations
within the interesting altitude domain), which exceeds the vertical resolution of the used hybrid
level grid (60 vertical levels) by far, a data thinning procedure has to be applied prior to the use of
the data. Several studies, also indicate that CHAMP observations have the best quality between 5
and 35 km [Beyerle et al.(2006)Beyerle, Schmidt, Wickert, Heise, Rothacher, and Koenig-Langlo],
so only observations within this altitude domain are used. Within the preprocessing step the
quality �ags of the observations (IGAM processed CHAMP data) are utilized to reject suspicious
data.

Figure 32: Interpolated and thinned measurement distribution.

During the preprocessing the number of measurements is reduced by averaging, taking the
background grid into account. The linear averaging procedure in LOG space, takes the spacing
of the background levels into account which is derived from the mean global vertical grid [Loes-
cher(2004)]. Fig. 32 depicts the chosen averaging pattern, giving two super observations between
two hybrid levels. The observation error assumptions (see section 3.6) can be seen as very con-
servative taking the fact of the observation averaging procedure within the pre-proprocessing step
into account. This pro�le thinning procedure leads leads to a signi�cant reduction in CPU without
noticeable loss of information.

5 Quality Control

The assimilation system allows for additional quality control steps and observation screening,
(e.g. certain criteria to refuse observation too far from the background values, taking the error
characteristic from both, background and observation into account), which are not implemented
at the moment. As a "quasi" quality control step the observations are screened for cases below the
model orography (cf. model orography Fig. 1), which might happen if the pro�les are used within
their full vertical domain (cf. horizontal interpolation of height grid Eq. 34a).
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6 Validation

6.1 Validation of Adjoint Code
Beside general validation strategies like test-bed setups, adjoint code can be veri�ed with numerical
methods,

hTL(x); TL(x)i = h(x); AD(TL(x))i. (88)

The identity expressed in Eq. 88 should hold up to machine accuracy, where TL, denotes the
tangent linear, AD, the adjoint and x the original input. These tests have been performed for
the observation operator adjoints (interpolation, forward model and �lter). This procedure can be
applied to single do loops as well as to whole subroutines or even larger sections of the code. It
is to mention that this methodology veri�es the adjoint code with respect to the forward model.
It will not show any bugs in the forward model (the adjoint code can be correct with respect to a
erroneous forward model). In our case, single or sets of subroutines as a whole have been tested
depending on the setup of the individual operators.

7 System Test Runs

The e¢ ciency of an assimilation system can only be veri�ed by real runs, using original data
sets. As a system test-bed the summer season 2004 covering the month June, July, August (JJA)
was chosen, using the ERA40 derived background �elds for the 00 time layer and the respective
CHAMP observations. The system has been implemented on ESA�s high performance computing
Grid on-Demand [Retscher et al.(2006)Retscher, Goncalves, Brito, and Fusco], o¤ering a large
number of data, computing and storage resources.
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a. Observations June 2004 00. b. Observations July 2004 00.

c. Observations August 2004 00. d. Observations JJA 2004 00.

Table 5: CHAMP RO observation distribution summer season (JJA) 2004.

The plots shown in Fig. 5 illustrate the global observation distribution for the 00 time layer
in June (a), July (b) and August (c) 2004 with the plot (d) showing the combined observation
distribution for the whole JJA 2004 season. The following sample plots are showing the results
of test runs comprising 30 simulations within the iterative procedure. The assimilation procedure
works on a monthly base; to derive the seasonal results the output of the respective monthly runs
is averaged. The presented plots cover the altitude domain predominately in�uenced directly by
the presence of observations. Since the cut-o¤ height of 35 respectively 5 km the increments above
and below these limits are caused due to the information spreading within the assimilation system
by the background covariance matrices. Model level 20 corresponds approximately to 4 km, model
level 50 to 37 km.

The impact of the RO observations on the temperature background is mainly apparent over the
southern high latitudes (Fig.33) which is in-line with the error characteristics of the background
(Fig.3.8.15). Wave like increment structures appearing predominately over Antarctica and recently
over the northern high latitude within the ECMWF temperature analysis �elds as in [Gobiet
et al.(2004a)Gobiet, Foelsche, Steiner, Borsche, Kirchengast, and Wickert ] when compared with
RO observations are not apparent. This model behavior might be less distinct in the ERA40 version
but more likely the use of monthly means and the averaging over 21 years removes these strange
patterns from the temperature background �elds. Another explanation might be the convergence
behavior which is addressed in 7.1.
The increment of the speci�c humidity analysis is limited to the lower most levels as can be seen
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Figure 33: Zonal mean temperature increment of the 00 time layer of the JJA 2004 season.

Figure 34: Zonal mean speci�c humidity increment of the 00 time layer of the JJA 2004 season.
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Figure 35: Zonal mean surface pressure increment of the 00 time layer of the JJA 2004 season.

in Fig. 34, a result which is expected, since the atmosphere is relatively dry above the troposphere
and the use of RO observations is limited to altitudes above 5 km in this study.
The surface pressure increment plots illustrate the horizontal spread of information due to

the �lter procedure, distinct increments appear predominately at southern high latitudes. The
observation distribution (Fig. a, b, c, and d table 5) shows an increased amount of observation at
high latitudes, a fact that can be contributed to the orbital characteristics of the CHAMP satellite.
The more distinct impact at the southern high latitudes can be explained by the orography of the
antarctic plateau. Since here the distance between the last observation (~5 [km]) and the surface
(~3 [km]) is drastically reduced compared to mean sea level, resulting in a more pronounced impact
of pressure information propagated down to the surface by the operators.

7.1 Convergence Behavior
The test runs had been performed using a hard limit of 30 function and gradient evaluations
(simulations) on ESA�s high performance Grid on Demand which resulted in 1 to 3 new iterates
indicating a bad convergence behavior (a simulation denotes the attempt to �nd a new minima
whereas an iterate denotes a successful simulation thus a new minima was found). Other exper-
iments using analysis or forecast �elds within six hour assimilation windows with a very similar
assimilation system produce ~20 new iterates using the same 30 function and gradient evaluations
limit [Loescher and Kirchengast(2008)]. The di¤erence is easy to explain since within an obser-
vation set covering a six hour time window spatially close observations will naturally have similar
values. In contrast observations within a six hour time window covering a whole month might be
quite di¤erent even if their separation in space is small since their separation in time might be
signi�cant (and in reality is). Since the observations are quite accurate which can be seen in the
characterization of the observation error covariance matrix (cf. 3.6) the minimization algorithm
tries to �t the background to observations which are spatially close but di¤er signi�cantly in value
(�tting one observation increases the costfunction value of the other and vice versa). Due to this
inherent problem the minimization procedure becomes numerical ill posed.
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Conclusions

As shown in the last section, the �rst results are mixed but still promising. Due to the observation
distribution I would advise to stick to the chosen approach and analyze monthly and even better
seasonal means. The approach to use six hour assimilation time windows around the synoptic
hours 00, 06, 12 ,and 18 is appropriate to take the local time issues into account. To derive total
monthly means the resulting �elds might be averaged separately. With the COSMIC constellation
up and in operation it will be possible to address the questions concerning local time after the
satellites reached their �nal orbits (expected in late 2007), since the distribution of observations in
space and time will be most likely su¢ cient.
The use of variational techniques is not widespread within the climate community, mostly due

to the principle of using data as una¤ected and uncontaminated as possible. Fact is that most
remote sensing data, since the measurements are in general indirect, not ful�l these requirements
anyway. Although RO data is closer to that ideal observation, than most other observations, a
variational approach is promising, since the bias free requirement (paramount to variational meth-
ods, and also important for climate applications) might be nearly ful�lled for RO data in the near
future.If one is interested in trend monitoring only relative changes are of interest, thus a bias
which is static would not pose a major problem. Nevertheless it is di¢ could to assess if a possible
bias is static over time if thr reason is not entierly clear. Advanced retrieval techniques like wave
optics are able to cope with the problems occurring in the lower troposphere and hence are super-
ior to geometric optics below about 7 km [Gorbunov(2002)], [Hocke et al.(1999)Hocke, Pavelyev,
Yakovlev, Barthes, and Jakowski ], [Sokolovskiy(2003)], [Jensen et al.(2003)Jensen, Benzon, and
Nielsen], [Beyerle et al.(2003)Beyerle, Wickert, Schmidt, and Reigber ]. On could also argue to use
RO data predominately in the stratosphere, an altitude domain where temperature data derived
from RO pro�les already exhibit a high quality. Future RO data products will take advantage of
the improved retrieval techniques and thus deliver high quality observations down into the lower
troposphere at least to the top of the planetary boundary layer. A next step should be the im-
plementation of a bending angle operator, following another principle of data assimilation, using
observations as raw and unprocessed as possible [Ringer and Healy(2008)], [von Engeln(2006)].
This approach mitigates introduction of errors due to processing and auxiliary data (incest prob-
lem). It allows for a simpler observation error characterization, avoiding correlations caused by
the data processing steps itself. Furthermore the concept can be expanded to other observations in
future to get multi instrument analyses. Using multiple instruments would improve the analysis in
a very elegant way not only by sheer numbers of observations. If combined in a clever way one type
of observation may balance weaknesses of another type and vice versa (for example a combination
of RO data comprising an excellent vertical resolution with radiometer data from a nadir sounder
exhibiting high spatial resolution). One might also think about joint retrievals if the number of
coincident events is high enough, to get a data product of improved quality.
The derivation of �rst guess �elds from ERA40 data results in a data set being completely

independent from model changes. This methodology o¤ers the unique opportunity to derive cli-
matological �elds to complement the traditional climate products, which are in general based
on interpolation techniques. Assimilation technique can combine di¤erent sources of information
in a optimal and consistent way, a clear advantage to interpolation techniques which show their
weakness in merging di¤erent sources of information.
Nevertheless the characterization of the background errors poses a di¢ cult problem, especially

for monthly mean �elds. This is an exercise which still has to be studied more in depth. The way
chosen here to derive the vertical correlations is valid and can be seen as a good approximation
of the truth which is in fact unknown. The derivation of horizontal correlations still has to be
conducted thoroughly; a possible way comprising examples has been shown here.
Concerning the observation error assumption the used approach has to be seen as a conservative

on, since the data is averaged (cf. 4) within the preprocessing step. This data thinning procedure
which results in a kind of super observation pro�le should reduce the overall standard deviation
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a bit, even if the data is a little bit blurred over the vertical domain. This is taken to a certain
extend into account by using the background grid to determine the vertical averaging interval.
Since the refractivity shows an exponential decrease with altitude, this is accounted for by the
dense background grid spacing within the troposphere which smoothly dencreases throughout the
tropopause into the stratosphere, thus the averaging intervals are growing with altitude suitable
for the characteristics of refractivity observations. Furthermore this preprocessing step ensures an
even vertical distribution of the observations within the background grid and a smoothing (the RO
pro�les capture �ner atmospheric structures than the model grid is capable to represent).
The convergence issue has been already addressed and will not be easy to solve. It stems

mainly from an inconsistency between pro�les which are close in distance but separated in time.
In that case the errors are not agreeing and the system tries to �t values which can�t be �t.
The background errors are signi�cantly larger than the observation errors so the weight of the
observations is high and the algorithm can not solve the discrepancy between observations close
in space but quite di¤erent in value. One way maybe to relax the observation error structures
to allow for more variability, which would mean in fact to assume more variance and thus using
intentionally suboptimal errors. That approach has not been tested and the way to relax the
errors (basically the shape of the error structure could stay the same but the magnitude has to be
changed, which can be easily done in the used formulation) has to be justi�ed. Maybe a relaxation
reassembling the underlying variability might be a possible approach. Using shorter timeframes
and thus reducing the separation in time of observations is possible and would work [Loescher and
Kirchengast(2008)] but the computing time would increase signi�cantly (extreme case instead of 4
runs per month up to 44 runs per month (4 per day)) although the number of observations within
every single assimilation run would decrease resulting in less cpu time.
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A Notation

xt : True State of the Atmosphere Dimension n
xb : Background Model State Dimension n
xa : Analysis Model State Dimension n
y : Observation Vector Dimension p
H : Observation Operator Dimension n! p
H : Linear Observation Operator Dimension n! p
B : Background Covariance Matrix Dimension n� n
R : Observation Covariance Matrix Dimension p� p
A : Analysis Covariance Matrix Dimension n� n
K : Gain Matrix Dimension n� n
I : Identity Matrix
Jb : Background Cost Function
Jo : Observation Cost Function
J : Total Cost Function
v : Background State Vector in Control Space Dimension n
E : Matrix Containing Eigenvectors (Columns) Dimension n� n
U : Control Space Transformation Operator
� : Eigenvalues
P : Inner Product
z : Geometric Height
� : Geopotential Height
' : Latitude
� : Longitude
� : Standard Deviation
� : Filter Coe¢ cients
F : Scaling Factors
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B Constants

k1 = 77:60 [K/hPa] Empirical Constant
Thayer Formula & Smith
Weintraub

k2 = 70:40 [K/hPa] Empirical Constant
Thayer Formula & Smith
Weintraub

k3 = 373900:00 [K2/hPa] Empirical Constant
Thayer Formula & Smith
Weintraub

A = 6:02214� 1023 [mol�1] Avogadro Number
R = 8:3145 [Pa�m3/K�mol] Universal Gas Constant
RDry = 287:06 [J/K�Kg] Dry Air Gas Constant
RWatV ap = 461:52 [J/K�Kg] Water Vapor Gas Con-

stant
mA = 28:964 [kg/kmol] Molar Mass of Dry Air
mW = 18:015 [kg/kmol] Molar Mass of Water Va-

por
gMean = 9:80665 [m�s�1] Mean Acceleration of

Gravity
rMean = 6371:0 [Km] Mear Radius of Earth
rPol = 6356:752314 [Km] Polar Radius of Earth
rEqu = 6378:137 [Km] Equatorial Radius of

Earth
M� = 6:022140� 1026 [Kmol�1] Kilo Mol
Earth_Flattening =

rEqu
rPol

� rEqu [km] Earth Flattening
J2 = 1:08263� 10�3 GRS-80 zonal coe¢ cient
gEqu = 9:7803 [m�s�1] Acceleration of Gravity at

Equator
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C List of Acronyms

ECMWF : European Center for Medium Range Weather Forecast
CHAMP : Challenging Mini Satellite Payload
RO : Radio Occultation
LEO : Low Earth Orbit Satellite
MEO : Medium Earth Orbit Satellite
GEO : Geo Stationary Orbit Satellite
TEC : Total Electron Content
GFZ : Geo Forschungszentrum Potsdam
3D-VAR : Three Dimensional Variational Data Assimilation
4D-VAR : Four Dimensional Variational Data Assimilation
pdf : Probability Density Function
BLUE : Best Linear Unbiased Estimator
TL : Tangent Linear
AD : Adjoint
IFS : ECMWF Integrated Forecast System
TLE : Two Line Element
COSMIC : Constellation Observing System for Meteorology, Ionosphere & Climate
CIRA : Cospar International Reference Atmosphere
COSPAR : Committee on Space Research
MSISE : Mass Spectrometry Incoherent Scatter (Extended)
RAOB : Radio (Balloon) Observations
MIPAS : Michelson Interferometer for Passive Atmospheric Sounding
PCA : Principal Component Analysis
ICA : Independent Component Analysis
GFZ : Geo Forschungs Zentrum Potsdam
DMI : Danish Meteorological Institute
ENVISAT : Environment Satellite
ERA40 : ECMWF Re-Analysis 40
GRAS : GNSS Receiver for Atmospheric Sounding
GNSS : Global Navigation Satellite System
WMO : Word Meteorological Organization
WCRP : World Climate Research Program
ECHAM5 : European Center Hamburg Model 5
METOP : Meteorological Operational Satellite
EPS : Eumetsat Polar System
SAF : Satellite Application Facility
WRF : Weather Research and Forecasting Model
MM5 : Mesoscale Model 5
GENESIS : GPS Environmental & Earth Science Information System
IPCC : Intergovernmental Panel on Climate Change
GCM : Global Circulation Model
NWP : Numerical Weather Prediction
OI : Optimal Interpolation
RF : Recursive Filter
INRIA : Institut National de Recherche en Informatique et en Automatique
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r.m.s. : Root Mean Square
NASA : National Aeronautics and Space Administration
NOAA : National Ocean and Atmospheric Administration
UCAR : University Cooperation for Atmospheric Research
CDAAC : COSMIC Data Analysis and Archive Center
GPS : Global Positioning System
SOAR : Second Order Autoregressive Function
FGAT : First Guess at Appropriate Time
ESA : European Space Agency
NCEP : National Climate and Environmental Prediction
BFGS : Broyden-Fletcher-Goldfarb-Shanno Method
NPOESS : National Polar Orbiting Environmental Satellite System
GPSOS : GPS Occultation Sensor
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