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M. E. Gorbunov
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1 Introduction
Radio occultations are a very prospective method of the remote sensing of the Earth’s atmosphere
for Numerical Weather Prediction (NWP) as well as for detection of global climate change [1]. The
use of the signals of the Global Positioning System for the remote sensing of the Earth’s atmosphere
was first suggested in [2]. High stability of the frequency of GPS signals secures the accuracy of the
determination of the atmospheric parameters required for the tasks of NWP. The first radio
occultation proof-of-concept experiment was conducted in 1995 by UCAR with Microlab-1 satellite
[3, 4]. Data acquired by Microlab-1 during 1995–1997 indicated high capabilities of the radio
occultation technique [5, 6, 7]. In 2000 Challenging Minisatellite Payload (CHAMP) was launched
[8], Currently, CHAMP provides 200–300 occultation events every day.

The underlying physical principle of the radio occultation technique consists in the measurement and
interpretation of the amplitude and phase of radio signals transilluminating the Earth’s atmosphere.
The source of the signals is a GPS satellite, while the receiver is located on a Low-Earth Orbiter
(LEO) satellite (the orbit height is about 700 km above the Earth’s surface). Wave propagation in the
atmosphere is determined by the field of the atmospheric refractivity, which is a known function of
the pressure, temperature, and humidity. From measured radio signals, the atmospheric refractivity
field can be reconstructed. The humidity term in the refractivity is negligible in polar region at all
altitudes, and in tropics above 7–10 km. If humidity is negligible, the hydrostatic equation allows for
the retrieval of vertical profiles pressure and temperature from the profile of refractivity. If, however,
humidity term is essential, then the use of a priori information (such as background profiles of
humidity or temperature from forecast) [4]) or using schemes of variational data assimilation
[9, 10, 11, 12]. The basic facts about radio occultation sounding are collected in Chapter 2.1 of this
Report.

Interpretation of wave fields measured in radio occultation experiments is performed as follows.
First, bending angles are retrieved, and then they are inverted to produce the refractivity profiles. In
this Report we describe original algorithms of the determination of bending angles from wave fields,
including filtering and quality control.

The simplest approach to the determination of refraction angles is based on the geometric optical
(GO) approximation and the assumption of the single ray propagation [13]. This method does not
work in the troposphere, where complicated structure of refractivity field results makes the effects of
multipath propagation and diffraction essential. The simplest technique of the retrieval of bending
angles from wave fields in multipath areas uses the analysis of local spatial spectra in sliding
apertures in the framework of the Radio Holographic Synthetic Aperture (RHSA) method
[14, 15, 16]. The Canonical Transform (CT) method for the retrieval of the ray structure was
introduced in [17]. This method uses the technique of Fourier Integral Operators (FIOs) which allow
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for the generalization of the canonical transform formalism used in the geometrical optics, for the
wave optics. This method uses a canonical transform that unifies the projection of the ray manifold
to the new coordinate axis. The corresponding FIO transform the wave field into the new
representation, where there is no multipath propagation. The CT method ensures a high accuracy of
the retrieval of bending angles, superior to that provided by the RHSA method.

The CT method was complemented by the Full Spectrum Inversion (FSI) Method introduced in [18].
FSI is based on the fact that in the event of the circular geometry of radio occultation (circular and
coplanar orbits of the satellites, and spherical shape of the Earth) the corresponding FIO coincides
with the Fourier transform. In order to account for the deviation of the real observation geometry
from the circular a further approximation was developed in [18]. A new, 2nd, type of FIOs (FIO2, to
be distinguished from the 1st type that had been used before, [17]) was introduced in [19]. FIOs of
the 2nd type generalize the FSI method for an arbitrary radio occultation geometry. The accurate
solution for the phase function of the FIO2 was found in [20]. The FIO2 with the accurate phase
function cannot be reduced to the Fourier transform in the general case. This significantly degrades
the numerical efficency of the numerical algorithm.

In Chapter 2.2 we discuss FIOs of the 2nd type. We derive the equations for their phase and
amplitude functions and present the solutions. We discuss the connection of FIO2 with canonical
transforms. We construct an approximation based on the linearized canonical transform that allows
for the reduction of a FIO2 to the Fourier transform, for a generic observation geometry.

Processing real observations requires filtering for noise reduction, as well as identification and
sorting out corrupted data. Also, it is necessary to estimation the accuracy of the retrieved bending
angles and temperatures. These topics are discussed in Chapter 3.1. This problems are solved by
means of the analysis of the local spatial spectra of the measured wave field and the wave field
transformed by the FIO2. Although this method does not provide such a high resolution as CT, it is
very convenient for visualizing observational data. The spectral width proves to be a very convenient
measure of the measurement errors. Therefore, the analysis of the local spatial spectra is
complementary to the global methods based on FIOs.

In Chapter 3.2 we give examples of processing CHAMP occultation events. We show how the
technique that we describe in this Report is applied for the processing of lower-tropospheric data,
where signal tracking errors significantly increase. The plots of spatial spectra visualize the quality
of the observational data. We also show retrieved temperatures and their errors.

2 Mathematical Methods of Processing Radio
Occultation data
Radio Occultation Basics
During a radio occultation experiment, the satellites moves in such a way that the radio ray linking
them immerses into the atmosphere (Fig. 2.1). The phase and the amplitude of the signal are
registered and recorded. The experiment is continued until the shadow area is reached, where signal
is weak and cannot be reliably measured. The transmitter is located on a GPS satellite, and the
space-borne receiver is carried by a Low Earth Orbiter (LEO). The measured wave field is
U(t) = C(t)A(t) sin (ikΨ(t) − iωt), where ω is the transmitter frequency, A(t) is the amplitude of
the received signal, Ψ(t) is the optical path along the ray trajectory from the transmitter to the
receiver, C(t) is the modulation of the GPS signal by a pseudo-random code. By digital processing,
the measured signal U(t) is demodulated and its complex amplitude u(t) = A(t) exp (ikΨ(t)) is
reconstructed [21, 22, 23]. From the full optical path we subtract the vacuum path Ψ0(t) computed
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Figure 2.1: Radio occultation geometry

for the straight rays between the transmitter and the receiver. Supplied radio occultation data contain
amplitude A(t), atmospheric phase excess ∆Ψ(t) = Ψ(t) − Ψ0(t) for the two channels of the GPS
(L1 – 1.57542 and L2 – 1.22760 GHz), and the orbit data of the satellites.

In the computation of Ψ0(t) it is essential to account for the relativistic effects [13]. However, the
relativistic factor only depends on the absolute velocity of the satellites. In the difference
Ψ(t) − Ψ0(t) the relativistic effect is cancelled at an relative accuracy of V 2/c2 ≈ 10−9. Therefore,
if the atmospheric phase excess was correctly computed on the preprocessing stage, we can compute
the full optical path Ψ(t) as a sum of ∆Ψ(t) and the satellite-to-satellite distance, and then use the
non-relativistic theory. The relative error of bending angle computation will then be about 10−9,
which is 3–4 orders of magnitudes below the main measurement and computational errors.

The derivative of the optical path Ψ̇ equals VLuL − VGuG, where VL,G are the velocities of the
satellite, uL,G are the unity vectors of ray directions at the transmitter and the receiver (here and after
index G relates to the GPS satellite, while index L relates to the LEO satellite). This expression can
be represented as a sum of terms including angular and radial velocity components. From the orbit
data of the satellites, we can compute their radial distances from the Earth’s center rG(t) and rL(t)
and the satellite-to-satellite angle θ(t) = θL(t) − θG(t), where θG(t) and θL(t) are the angular
coordinates of the satellites in the instant vertical plane showed in Fig. 2.1. Then we can write the
following equation:

Ψ̇ = θ̇LrL sinψL − θ̇GrG sinψG + ṙL cosψL + ṙG cosψG. (2.1)

In the assumption of the local spherical symmetry [24, 25], the impact parameter (leveling height) of
the ray p is the same at the transmitter and at the receiver, p = rL sinψL = rG sinψG.. This is a
particular case of the formula of Bouger, or Snell’s law for a spherically-symmteric medium:
rn(r) sinψ = p, where n(r) is the vertical profile of the atmospheric refractivity. This allows for
rewriting the formula for derivative of the optical path as follows:

Ψ̇ = η(p, t) ≡ θ̇p+
ṙL

rL

√

r2
L − p2 +

ṙG

rG

√

r2
G − p2. (2.2)

Here, Ψ̇ is the observable quantity, and θ̇, ṙL,G, rG,L are known functions of time t. Therefore, the
right-hand part η(p, t) is known function of p and t. Given measurements Ψ̇(t), it is possible to solve
equation (2.2) for p(t) (although the solution is non-unique, it is straightforward to choose the only
physical solution). The simplest way is to solve equation (2.2) numerically, because its analytical
solution is too complicated. The refraction (bending) angle of the ray, ε, is defined by the following
simple geometrical relation:

ε = θ − arccos
p

rL

− arccos
p

rG

. (2.3)
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From the known function p(t) and orbit data rG(t), rL(t), θ(t) we can thus determine the bending
angles ε(t). Functions p(t) and ε(t) specify the profile of bending angle ε(p), parametrically. The
above discourse was essential based on the assumption that at each moment of time t only one ray is
observed. In the event of interference of multiple rays, the computation of bending angles from the
derivative of the optical path results in non-physical, strongly oscillating profiles [17]. The methods
of the determination of bending angle profiles in multipath areas are discussed below in Chapter 2.2.

By the Abel transform, from the bending angle profile it is possible to derive the profile of the
refractivity [26]:

n(x) =
1

π
exp





∞
∫

x

ε(p) dp
√

p2 − x2



 , (2.4)

where x(r) = rn(r) is the refractive radius. The retrieved profile n(x) and the dependency
r(x) = x/n(x) define the profile n(r) in the parametric form.

In this Report, we do not discuss the retrieval of the atmospheric humidity. If the influence of
humidity is negligible, then the refractive index is computed as follows [27]:

n = 1 + C
P

T
= 1 + CRρ, (2.5)

where P is the pressure, T is the temperature, R is the gas constant for the dry air, ρ is the density,
C = 77.6 × 10−6 hPa/K. From here, together with the hydrostatic and state equations, we obtain the
temperature [24]:

T (z) =

∞
∫

z

g(z′)ρ(z′) dz′

Rρ(z)
=

∞
∫

z

g(z′) [n(z′) − 1] dz′

R [n(z) − 1]
, (2.6)

where z = r − rE is the altitude above the Earth’s surface, g(z) is the profile of the gravity
acceleration.

Reconstruction of Ray Structure of Wave Fields
Multipath Propagation

In presence of complicated profiles of refractivity n(r), the corresponding bending angle profiles
ε(p) is a non-monotonous function. This results in multipath propagation of radio signals [14]. In
order to show this, consider the geometric relation (2.3). Given profile ε = ε(p) and some positions
of the transmitter and receiver defined by the parameters rL, rG, θ, (2.3) will be an equation for the
the impact parameters of all the rays linking the transmitter and the receiver. Denote the right-hand

part of (2.3) εG(p). Define DG,L =
√

r2
G,L − p2 the distances from the transmitter and the receiver to

the planet limb and D =
(

D−1
L +D−1

G

)

−1
the reduced observation distance. Then we can write the

following equation:
dεG(p)

dp
=

1

D
> 0. (2.7)

This shows that εG(p) is a monotonously increasing function of the impact parameter. For a smooth
exponential model of the atmosphere, ε(p) monotonously decreases, dε(p)/dp < 0. Therefore,
dependencies ε(p) and εG(p) for each satellite configuration have not more than one intersection
point. In this case there is a single-ray propagation. If, however, dependence ε(p) is non-monotonous
and there exist such p that dε(p)/dp > D−1, then observation points exist, where multiple rays are
observed. From this it follows that if the observation distance is large enough, then a
non-monotonous profile ε(p) should necessarily result in multipath propagation.
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Analysis of Local Spatial Spectra of Wave Field

The wave field in a multipath area can be approximately written as a sum of fields corresponding to
different interfering rays:

u(t) =
∑

j

uj(t) =
∑

j

Aj(t) exp (ikΨj(t)) , (2.8)

where index j enumerates the rays with impact parameters pj(t) observed at time moment t. For
functions pj(t) and Ψ̇j(t), relation (2.2) holds. However, the the expansion of the full measured field
u(t) into components uj(t), as well as the number of the components are unknown a priori.
Therefore, equation (2.2) cannot be directly used for the determination of the impact parameters. It
is also straighforward that in a multipath area we cannot substitute the derivative of the eikonal Ψ̇(t)
of the field u(t) into equation (2.2), which is only valid for single-ray propagation.

The simples way of the separation of interfering rays implements the analysis of local spatial spectra
of the wave field. This method was used for processing data of sounding of planetary atmospheres
[28]. For the application for sounding the Earth’s atmosphere, this method was enhanced by using
the focused synthetic aperture [14, 15, 29, 30]. In the framework of this technique, a spectral
analysis of the wave field u(t) in sliding apertures is performed:

v(t, η) =

t+T/2
∫

t−T/2

u(τ) cos
π (τ − t)

T

Am(τ ) exp
[

ik
(

Ψm(τ) − Ψ̇m(t)τ
)] exp (−ikητ ) dτ, (2.9)

where Am(t) exp (ikΨm(t)) is the reference signal, computed for a smooth model of atmospheric
refractivity, T is the sliding aperture size. The use of the reference signal is essential, because it
corrects for the wave front curvature and thus it focuses the synthesized aperture [15, 29]. The
maxima of the spectrum |v(t, η)| for each time t expose the physical rays interfering in given
observation point. The impact parameter p and bending angle ε can be expressed as functions p(t, η)
and ε(t, η) from equations (2.2, 2.3). This is a parametric form of the amplitude of the local spatial
spectrum as function |v(p, ε)|. This method imposes some restrictions on the resolution [29],
however, it is an extremely convenient means of the visualization and diagnostics of experimental
data [31].

Canonical Transform Method

For the reconstruction of the ray structure of wave fields we use the Canonical Transform (CT)
method [17, 19]. The general description of the method follows. We measure the wave field
u(y) = A(y) exp(ikΨ(y)) along the satellite parameterized by some arbitrary coordinate y (in
particular, we can choose y = t). It is necessary to determine its ray structure, i.e. the ray directions
at each point y. In the framework of the Hamilton formulation of the geometric optics, ray are
described by the canonical Hamilton system with respect to coordinate y and momentum η [32].
Momentum equals the derivative of the eikonal ∂Ψ/∂y provided that at point y only one ray is
observed [32]. In event of interference of multiple rays, their momenta ηj are according to equation
(2.8) as ∂Ψj/∂y. Multiple rays emerge if the projection of the ray manifold to axis y is multi-valued
[33]. Formula η = ∂Ψ/∂y is inapplicable in this case. A canonical transform of the coordinate and
momentum in the phase space allows for choosing new coordinate z and momentum ξ in such a way
that the projection of the ray manifold to the new coordinate axis is single-valued [17]. The
corresponding transform of the wave field is performed by the FIO Φ̂. From the transformed wave
field Φ̂u(z) = A′(z) exp (ikΨ′(z)) it is possible to compute the momentum in the new representation
ξ(z) = ∂Ψ′/∂z. This allows for the reconstruction of the complete ray manifold. Using the inverse
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canonical transform, it can be mapped back into the representation of the old coordinate and
momentum.

In work [17] an FIO was used, which it was afterwards suggested to term FIO of the 1st type [19].
The operator was employed in combination with the back propagation. As a generalization of the
FSI method [18], in [19] FIOs of the 2nd type were introduced. These operators are applied directly
to measured wave field u(t) without back propagation, which allow for the enhancement of the
numerical efficiency.

FIO of the 2nd type has the following form:

Φ̂2u(z) =

√

−ik
2π

∫

a2(z, t) exp(ikS2(z, t))u(t) dt, (2.10)

where a2(z, t) is the amplitude function, and S2(z, t) is the phase function of the operator. Consider
the link between this operator and canonical transforms. For this purpose we employ the stationary
phase method. For the sake of simplification of the notation, we consider the field u(t), assuming
that, if necessary, we can consider its component uj(t). The stationary phase point ts(z) of the
integral (2.10) is defined by the following equation:

∂S2(z, t)

∂t
= −dΨ(t)

dt
≡ −η(t). (2.11)

Let Φ̂2u(z) = A′(z) exp (ikΨ′(z)). The eikonal Ψ′ of the transformed wave field Φ̂2u(z) is
computed as follows:

Ψ′(z) = S2(z, ts(z)) + Ψ(ts(z)) +
γ

k
, (2.12)

where γ = ±π/2. Term γ/k asymptotically vanishes with big wavenumbers k, and for our analysis
it is not essential. Compute the derivative of the eikonal, i.e. the momentum ξ(z) of the transformed
wave field, using equation (2.11):

ξ(z) ≡ dΨ′(z)

dz
=
dts
dz

(

∂S2(z, t)

∂t
+
dΨ(t)

dt

)∣

∣

∣

∣

t=ts(z)

+
∂S2(z, t)

∂z

∣

∣

∣

∣

t=ts(z)

=
∂S2(z, ts(z))

∂z
. (2.13)

From (2.11) and (2.13) we derive we derive the following equation for the full differential of the
phase function:

dS2 = ξ dz − η dt. (2.14)

Here, η dt is the reduced form of action in the old representation. Similarly, ξ dz is the reduced form
of action in the representation of the transformed coordinate z. Because the difference ξ dz − η dt
equals a full differential dS2, the transform (t, η) → (z, ξ) is canonical [34]. A detailed analysis of
the link between FIOs and canonical transforms can be found in [35].

Amplitude function is determined from the energy conservation principle:
∣

∣

∣
Φ̂2u(z)

∣

∣

∣

2

dz = |u(ts(z))|2 µdts(z), (2.15)

where µ = µ(z, t) is the measure density, which will be defined below. Using the standard
expression for the amplitude in the approximation of the stationary phase, we derive the following
equation:

|a2(z, t)A(t)|2
∣

∣

∣

∣

−∂
2S1(z, t)

∂t2
− d2Ψ(t)

dt2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t=ts(z)

dz = A2(ts(z)) |µ dts(z)| . (2.16)
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Therefore, we arrive at the following formula for the amplitude function:

|a2(z, ts(z))|2 =

∣

∣

∣

∣

−∂
2S1(z, t)

∂t2
− d2Ψ(t)

dt2

∣

∣

∣

∣

t=ts(z)

∣

∣

∣

∣

µ dts(z)

dz

∣

∣

∣

∣

. (2.17)

Differentiating equation for the stationary phase point (2.11) with respect to z, we derive the
following equation:

(

∂2S1(z, t)

∂t2
+
d2Ψ(t)

dt2

)∣

∣

∣

∣

t=ts(z)

dts(z)

dz
= −∂

2S1(z, t)

∂z ∂t

∣

∣

∣

∣

t=ts(z)

. (2.18)

Using it, we can write the ultimate formula for the amplitude function:

a2(z, t) =

√

∣

∣

∣

∣

µ
∂2S2(z, t)

∂z ∂t

∣

∣

∣

∣

. (2.19)

Now we apply the technique of FIOs for the reconstruction of the ray structure of the measured wave
field u(t). At every moment of time t several rays with different impact parameters p can interfere.
Impact parameters of different rays in a spherically-symmetric medium are always different. This
follows from the fact that impact parameters of rays leaving the transmitter equal p = rG sinψG.
Because different rays have different start direction ψG, they will also have different impact
parameters. Because the impact parameter of a ray is the same at the transmitter and at the receiver,
all the rays registered during a radio occultation experiment have different impact parameters.

Consider a ray manifold in the phase space with coordinate t and momentum η. Multipath
propagation takes place if the projection of the ray manifold to the axis t is multi-valued. If we
consider the new coordinate z = p, then, as was shown above, the projection of the ray manifold to
axis p is single-valued. Therefore, we will use the canonical transform (t, η) → (p, ξ), where the
new momentum ξ will be determined below from the requirement for the transform to be canonical.

Because the FIO must conserve energy, we begin with the definition of the measure density µ.
Denote the power of the transmitter P . We require energy conservation in the following form:

P

2π
dp = A2µdt. (2.20)

Energy transmitted by an omnidirectional antenna in an infinitesimal cone is given by the following
expression [36]:

dET =
P

4π
dψG sinψG dφ, (2.21)

Impact parameter p equals rG sinψG. From this, we derive dp = rG cosψGdψG =
√

r2
G − p2dψG.

Therefore, we have the following distribution of the energy with respect to impact parameters:

dET =
P

4π

1
√

r2
G − p2

p

rG
dφ dp. (2.22)

Consider a receiving aperture in the form of an infinitesimal element of a sphere concentric with the
Earth. (Fig. 2.2). The received energy equals A2 cosψL dS, where A is the refractive amplitude, ψL
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Figure 2.2: Ray tube geometry for the definition of the amplitude of radio occultation signal.

is the angle between the ray tube and the normal to the receiving aperture, dS is the square of the
receiving aperture [36]:

dER =
1

2
A2 cosψLrLrL sin θ dφ δθ =

1

2
A2
√

r2
L − p2

LrL sin θ dφ δθ. (2.23)

Here δ denotes the differential along the sphere with constant rL, rG. Employing the identity
between the transmitted and received energy, we derive the following expression for the amplitude:

A2 =
P

2π

1
√

r2
L − p2

√

r2
G − p2

p

rGrL sin θ

dp

δθ
≡ P

2π

dp

µ dt
. (2.24)

For the size of the the virtual receiving aperture δθ we have the following expression:

δθ = dθ −
(

∂θ

∂rG

)

p

drG −
(

∂θ

∂rL

)

p

drL = dθ − drG

rG

p
√

r2
G − p2

− drL

rL

p
√

r2
L − p2

. (2.25)

From this, we derive the following expression for the measure density:

µ =
√

r2
L − p2

√

r2
G − p2

rLrG

p
sin θ

(

θ̇ − ṙG

rG

p
√

r2
G − p2

− ṙL

rL

p
√

r2
L − p2

)

. (2.26)

Using equations (2.14, 2.2), we derive the phase function [20, 35]:

S2(p, t) = −
∫

η(p, t) dt = −
∫
(

pdθ +
drG

rG

√

r2
G − p2 +

drL

rL

√

r2
L − p2

)

=

= −pθ −
√

r2
G − p2 + p arccos

p

rG
−
√

r2
L − p2 + p arccos

p

rL
. (2.27)

This expression is defined up to an arbitrary function F (p), which it is convent to assume being
identically equal to 0. Denote ts(p) the trajectory point where the ray with a prescribed impact
parameter p is observed. The derivative of the eikonal of the transformed wave field Φ̂2u(p), or the
new momentum ξ, due to formulas (2.14), is computed as follows [20, 35]:

ξ(p) =
∂S2(p, t)

∂p

∣

∣

∣

∣

t=ts(p)

= −θ + arccos
p

rG
+ arccos

p

rL
= −ε(p). (2.28)
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Therefore, for the processing of radio occultation data, it is possible to apply the operator of the 2nd
type and compute the transformed wave field Φ̂2u(p) = A′(p) exp(ikΨ′(p)). The derivative of its
eikonal Ψ′(p) with the negative sign is equal to the refraction angle ε(p). The phase function is
defined up to an an arbitrary function F (p). Therefore, the phase function can be redefined
S ′

2(p, t) = S2(p, t) + F (p). In this case momentum equals ξ ′ = ξ + dF (p)/dp. This correspond to
the multiplication of Φ̂2u(p) with exp(ikF (p)). The bending angle is then equal to
ε(p) = −ξ′ + dF (p)/dp. Thus, the new momentum is defined up to an arbitrary function of the
impact parameter.

By virtue of the definition of the amplitude function a2(p, t) by formulas (2.15, 2.20), the amplitude

of the transformed field
∣

∣

∣
Φ̂2u(p)

∣

∣

∣
is close to the θ-function. In the light zone it is approximately

constant, in the shadow zone it abruptly drops to very small values [31].

For a circular observation geometry (rG = const, rL = const) the phase function linearly depends
on θ, and in the amplitude the dependence from θ is factored out:

Φ̂2u(p) =

√

−ik
2π

exp

[

ik

(

−
√

r2
G − p2 + p arccos

p

rG
−
√

r2
L − p2 + p arccos

p

rL

)]

×

×
(

√

r2
L − p2

√

r2
G − p2

rLrG

p

)1/2 ∫

exp(−ikpθ(t))u(t)
√

sin (θ(t))θ̇(t) dt. (2.29)

This reduces the operator to the combination of the Fourier transform of u(t(θ))
√

sin θ with respect
to the variable θ and multiplication with a known function of p. We will describe an approximation
that allows for the reduction of the FIO to the Fourier transform for an arbitrary observation
geometry.

From equation (2.2) the impact parameter p can be expressed as function p(t, η). Introduce the
approximate value of the impact parameter p̃:

p̃(t, η) = p0(t) +
∂p0

∂η
(η − η0(t)) = f(t) +

∂p0

∂η
η,

f(t) = p0(t) − ∂p0

∂η

∣

∣

∣

∣

η=η0(t)

η0(t) = p0 −
(

θ̇ − ṙG

rG

p0
√

r2
G − p2

0

− ṙL

rL

p0
√

r2
L − p2

0

)

−1

η0. (2.30)

where η0(t) is a smooth model of the derivative of the optical path, p0(t) = p(t, η0(t)). Model η0(t)
can be obtained by the differentiation of the measured optical path with a strong smoothing. The
accuracy of this approximation for the impact parameter is about 1 m for a typical observation
geometry. Define a new parameter of the trajectory Y = Y (t) and the corresponding momentum σ
as follows:

dY =

(

∂p0

∂η

)

−1

dt =
∂η

∂p0
dt, (2.31)

σ =
∂p0

∂η
η. (2.32)

For the sake of simplicity, we use notation u(Y ) instead of u(t(Y )). For the transform into the
representation of the approximate impact parameter, we introduce a linear canonical transform:

p̃ = f(Y ) + σ, (2.33)

ξ = −Y, (2.34)
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Its generating function is defined by equation (2.14):

dS2 = ξ dp̃− η dY = −Y dp̃− (p̃− f(Y )) dY, (2.35)

S2(p̃, Y ) = −p̃Y +

Y
∫

0

f(Y ′) dY ′. (2.36)

For dY we have the following expression:

dY = dθ − drG

rG

p0
√

r2
G − p2

0

− drL

rL

p0
√

r2
L − p2

0

≈ δθ. (2.37)

We can write approximately δθ/dY ≈ 1. Because |∂2S2/∂p̃ ∂Y | = 1, the amplitude function equals√
µ:

a2(p̃, Y ) =

(

√

r2
L − p̃2

√

r2
G − p̃2

rLrG sin θ

p̃

)1/2

. (2.38)

The amplitude function a2(p̃, Y ) in operator Φ̂2 can be replaced with a2(p̃, Ys(p̃)) and factored out
from within the integral. The resulting operator will be a composition of the multiplication with a
reference signal exp

[

ik
∫

f(Y ) dY
]

, the Fourier transform and multiplication with the amplitude
function:

Φ̂2u(p̃) =

√

−ik
2π

a2(p̃, Ys(p̃))

∫

exp (−ikp̃Y ) exp



ik

Y
∫

0

f(Y ′) dY ′



 u(Y ) dY. (2.39)

Function Ys(p̃) equals −ξ, where momentum ξ is equal to the derivative of the eikonal of the
transformed wave field. For the computation of the eikonal, we first substitute 1 instead of
a2(p̃, Ys(p̃)) into (2.39), then compute momentum ξ and multiply the transformed wave function
with a2(p̃, Ys(p̃)). The bending angle ε as a function of p and Y is defined by relation (2.3) and orbit
data rG(t(Y )), rL(t(Y )) and θ(t(Y )). Substituting Y = Ys(p), we arrive at the profile of the bending
angle ε(p):

ε(p) = θ (t(Ys(p))) − arccos
p

rL (t(Ys(p)))
− arccos

p

rG (t(Ys(p)))
(2.40)
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3 Analysis of CHAMP data
Filtering and Quality Control of CHAMP Data
Introduction

In this Chapter we demonstrate how the technique that we have developed above is employed for the
analysis of the observational data acquired by CHAMP. The measurement of radio occultation
signals in multipath areas, where the amplitude and phase of the signal undergo strong fluctuations,
poses a technical challenge. Under these conditions, the receiver often loses the track of the signal or
corrupts the data [21, 22]. The quality of CHAMP data in the troposphere below 10 km proves to be
degraded [37, 23, 38]. L2 channel is especially susceptible to signal tracing errors. Therefore, data
processing chain must contain filtering and quality control components.

Observational data contain orbit data of the satellites, amplitudes A1,2(ti), atmospheric phase
excesses ∆Ψ1,2(ti) for L1 and L2 channels at a sampling rate of 50 Hz (ti = t0 + 0.02i seconds.).
Full optical paths are computed as Ψ1,2(ti) = Ψ0(ti) + ∆Ψ1,2(ti), where Ψ0(ti) is the
transmitter-to-receiver distance. The velocity of the vertical immersion of the ray into the
atmosphere is estimated as 2 km/s under the conditions of weak refraction above 10 km. This
corresponds to a spatial sampling rate of about 40 m. In the troposphere, due to strong regular
refraction, the velocity of the ray immersion decreases down to 0.2 km/s on the average, near the
Earth’s surface.

The data processing chain contains the following blocks: 1) Preprocessing. The final fragments of
occultation data sets measured in the lower troposphere, where signal tracking errors are essential
are cut-off. A correction is applied to the data measured in the L2 channel, where signal tracking
errors significantly exceed those in the L1 channel. 2) Retrieval of bending angles with the aid of the
FIO technique described in Chapter 2.2. 3) Estimation of bending angles by the analysis of the local
spatial spectra of the transformed wave fields Φ̂2u1(p). 4) The inversion of bending angles and the
estimation of the errors of the retrieved temperature from the bending angle errors.

Preprocessing of Observational Data

A rough estimation of the refraction angle profile is performed by equations (2.2) and (2.3), where Ψ̇
is evaluated with a strong smoothing with a vertical filter width of about 2 km. Starting from the
moment of time, where the bending angle estimate reaches 0.02 rad, data are cut-off. Statistical
analysis [38] indicates that such data are unsuitable for further processing.

Then the analysis of the local spatial spectra v1,2(t, η) is performed for the signals
u1,2(t) = A1,2(t) exp [ik1,2Ψ1,2(t)]. An example of the spectra is shown in Fig. 3.1 in panels a) and
b). The spectra are plotted in pseudo-color (gray scale) in coordinates ε, p by using the dependencies
ε(t, η) and p(t, η). Instead of the impact parameter p we use the ray (leveling) height p− rE , where
rE is the radius of local curvature of the geoid. The ray that touches the Earth’s surface with its
perigee point has an ray height of rE(n(rE) − 1) ' 2 km, because the characteristic value of the
refractive index n on the Earth’s approximately equals 1 + 3 × 10−4, and rE ' 6370 km. In the L1
channel, the spectra especially well visualize the refraction angle profile above 6.5 km. In the L2
channel this fragment of the bending angle profile is also distinctly seen. However, the spectra are
wider as compared to L1, which indicates a worse signal quality. Below 6.5 km the L1 spectra reveal
a complicated structure, which an evidence of multipath propagation. In the L2 channel the situation
is completely different. After the ray height reaches 6.5 km and the refraction angle 0.011 rad, the
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spectra indicate a rapid increase of the refraction angle, also resulting in overestimated ray heights,
because for a fixed observation point rays with a greater bending angle come form a greater height.
This signifies that the L2 signal was lost, and this fragment of the L2 signal record is unsuitable for
processing. For sorting out such data, we form a penalty function characterizing the L2 data quality.
From the spectra we evaluate the mean value and the spectral width of the impact parameter:

p̄1,2(t) =

∫

|v1,2(t, η)|2 p(t, η) dη
∫

|v1,2(t, η)|2 dη
, (3.1)

δp1,2(t) =

(

∫

|v1,2(t, η)|2 (p(t, η) − p̄1,2(t))
2 dη

∫

|v1,2(t, η)|2 dη

)1/2

. (3.2)

The empirical penalty function is assumed to be equal to the following expression:

W (t) = 1 − exp

[

−(p̄2(t) − p̄1(t))
2 + δp2

2(t)

∆p2

]

, (3.3)

where parameter ∆p equals 0.2 km. This function estimation the degradation of the quality in the L2
channel. The indicators of the quality degradation are a large spectral width δp2(t) and a large
discrepancy between L1 and L2 impact parameters p̄2(t) − p̄1(t).

The smoothed optical paths are computed from the profiles of the smoothed impact parameter:

Ψ̄1,2(t) =

t
∫

t0

η(p̄1,2(t
′), t′) dt′. (3.4)

Smoothed ionospheric difference of the optical paths is evaluated as ∆Ψ̄(t) = Ψ̄2(t) − Ψ̄1(t) in the
time interval where W (t) < 0.7. In the troposphere, where the L2 signal quality is typically
degraded (W (t) > 0.7), ∆Ψ̄(t) is linearly extrapolated. For this purpose, a linear regression ∆Ψ̄(t)
is constructed between the moment of time, when the ray reaches a height of 30 km, and the moment
of time, when W (t) reaches a value of 0.7.

Denote Di the operation of taking the finite difference of a gridded function DiF = F (ti+1)− F (ti).
The corrected optical path Ψcor

2 (t) and amplitude Acor
2 (t) for the L2 channel are defined as a linear

combination of L1 and L2 data with a weight determined by the penalty function W (t):

DiΨ
cor
2 = DiΨ2 (1 −W (ti)) +

(

DiΨ1 +Di∆Ψ̄
)

W (ti), (3.5)

Ψcor
2 (ti) =

i−1
∑

j=1

DjΨ
cor
2 , (3.6)

Acor
2 (ti) = A2(ti) (1 −W (ti)) . (3.7)

The definition of the combination in terms of the finite differences allows for getting rid of the
arbitrary constants Ψ0

1,2 in the L1 and L2 optical paths. The linear combination of the optical paths
will contain the combination of the constants Ψ0

2 (1 −W (ti)) + Ψ0
1W (ti), which is not constant,

which results in significant errors in the computation of the refraction angle.

Determination of Bending Angles

Wave fields u1(t) and ucor
2 (t) are transformed by the FIO Φ̂2, defined by formulas (2.39), (2.38) and

(2.30). The bending angles ε1,2(p) are computed by formula (2.40). The border of the geometric
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optical shadow p1 is defined as the maximum of the correlation of the amplitude
∣

∣

∣
Φ̂2u1(p)

∣

∣

∣
with the

θ-function. For the L2 data, the correlation maximum of
∣

∣

∣
Φ̂2u1(p)

∣

∣

∣
with the θ-function, p2, defines

the border, below which the L2 data are unsuitable for further processing (typically, p2 > p1). For
p ∈ [p1, p2] the L2 bending angles ε2(p) were defined as ε1(p) + ∆ε(p), where ∆ε(p) is the
estimation of the ionospheric difference ε1(p) − ε2(p) computed by average over the interval of
impact parameters [p1, p1 + 1 km].

Bending angle profiles ε1,2(p) contain the ionospheric component, which is inversely proportional to
the squared frequency, if we assume that bending angle is approximately a linear functional of the
ionospheric refractivity. This allows for the extraction of the neutral component of the bending angle
ε(p) [39, 40, 41, 42]. Above 50 km the ionospheric component of refraction angle significantly
exceeds the neutral component. This allows for the estimation of the residual ionospheric error
δεI(p) in the bending angle profile ε(p) [41].

Estimation of Bending Angle Errors

The estimation of errors of ε(p) in the lower troposphere is performed by the analysis of local sliding
spectra of the transformed wave field Φ̂2u1(p) = A′(p) exp (ikΨ′(p)). For this purpose we computed
eikonal Ψ̄′(p) smoothed with a window of 0.25 km and the sliding spectra similar to (2.9):

w(p, ξ) =

p+∆p/2
∫

p−∆p/2

cos
π (p′ − p)

∆p

Φ̂2u1(p
′)

exp
(

ikΨ̄′(p)
) exp (−ikξp′) dp′, (3.8)

where ∆p = 1.0 km. The spectral maxima is locate near ξ = 0. The tropospheric error of bending
angle δεT (p) is estimated as the spectral width:

δεT (p) =

(

∫

|w(p, ξ)|2 ξ2dξ
∫

|w(p, ξ)|2 dξ

)1/2

. (3.9)

Mean square error δε(p) of the determination of bending angle was assumed to equal δεI(p) for ray
heights p− rE > 10 km, and δεT (p) for ray height p− rE < 10 km.

Inversion and Estimation of Temperature Retrieval Errors

From the neutral bending angles ε(p), by the Abel inversion (2.4), the refractivity n(r) is retrieved.
The dispersion of the retrieved refractivity is estimated as follows:

〈

δn2(x)
〉

=

∞
∫∫

x

〈δε(p′)δε(p′′)〉 dp′dp′′
√

p′2 − x2
√

p′′2 − x2
, (3.10)

where the covariance matrix of the bending angles 〈δε(p′)δε(p′′)〉 is assumed to equal δε2(p) if
p′ = p′′ = p, and for other values of p′ and p′′, the covariance matrix was taken in the triangle shape
with a characteristic width 1 km according to the estimation in [42].
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For the errors of the retrieved temperature, from (2.6) we readily derive the following estimation:

〈

δT 2(z)
〉

=
〈δn2(z)〉

[n(z) − 1]2
T 2 − 2

∞
∫

z

g(z′) 〈δn(z)δn(z′)〉 dz′

R [n(z) − 1]2
T+

+

∞
∫∫

z

g(z′′)g(z′) 〈δn(z′)δn(z′′)〉 dz′ dz′′

R2 [n(z) − 1]2
. (3.11)

Assuming that the correlation radius of error δn(z) is significantly smaller that the homogeneous
atmosphere height, we can approximately write:

〈

δT 2
〉1/2

=
〈

δn2
〉1/2 T

n− 1
. (3.12)

Analysis of Observational Data
In this Chapter we discuss examples of processing occultation events observed by CHAMP. We
compute bending angles and temperature profiles and their error estimates from formulas (3.9) and
(3.12). We also give the bending angles and temperature profiles computed from the global
atmospheric fields from the analysis of German Weather Service (Deutscher WetterDienst – DWD)
nearest in time. It is important to notice that the discrepancy between the radio occultation data and
DWD data includes both errors of radio occultation data and error of the analysis. The comparison
of radio occultation data with analyses of European Center for Middle-Range Weather Forecast
based on the statistical analysis of a large number of occultation events was presented in [7, 38].
Here we do not perform such a statistical comparison.

Figure 3.1, panels c) and d), shows the bending angles and temperatures retrieved from a CHAMP
occultation event, as well as the estimates of their errors. Above 25 km, the estimates of the error
due to background ionospheric fluctuations begin to increase. Above 30–40 km radio occultation
data do provide useful information for weather forecast [41, 42]. Between 25 km and 7 km the
estimates of the errors are mostly limited by 1 K. This is explained by the fact that in this height
range bending angles large enough as compared to the background ionospheric fluctuations, and
multipath propagation effects for GPS frequencies do not play any noticeable role. Below 7 km,
multipath propagation emerges, as indicated by the non-monotonous bending angle profiles retrieved
from the CHAMP data, as well as modelled for the DWD analysis. Here, the estimations of the
errors significantly increase.

Figure 3.2 shows the results of processing another occultation event. Here the profile of the bending
angle is non-monotonous in the impact parameter intervals of 11–12 and 6–8 km. Here the estimate
of the errors of the bending angle profile proves to be low enough to draw a conclusion about
multipath propagation. In the L2 channel the deterioration of the data quality in this intervals is
noticed. Below 4 km, in the area of strong multipath, the estimates of the bending angle errors are
significant. In this event, the ionospheric fluctuations are weak, and the estimation of the temperature
retrieval error at a height of 30 km is about 1 K.

4 Conclusion
In this Report we described the methods of interpretation of data of radio occultation sounding of the
Earth’s atmosphere. The methods include: 1) noise reduction and quality control of L2 data on the
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Figure 3.1: Radio occultation event 0004, January 18, 2004, UTC 00:24, 50.4◦N 116.1◦W: a) local
spatial spectra for L1 channel, b) local spatial spectra for L2 channel, c) bending angles: computed
for the DWD analysis and retreived from the CHAMP data, d) temperature from the DWD analysis
and retrieved from the CHAMP data.

basis of the analysis of local spatial spectra of measured wave fields; 2) the retrieval of bending
angles by the CT method; 3) the estimation of errors of bending angles by the analysis of the local
spectra of the wave field in the transformed space; 4) ionospheric correction combined with the
statistical regularization; 5) Abel inversion of bending angle profiles for the retrieval of refractivity,
6) retrieval of temperature profile in the hydrostatic approximation. It is important that the error
estimations can be obtained without using a priori information. At big heights ionospheric
fluctuations prevail in the signal. This allows for the estimation of bending angle errors above 8–10
km, where ionospheric fluctuation are the main error source. Below 8–10 km, errors of the
derivation of bending angles are due to multipath propagation. These errors are estimated from the
width of the local spatial spectra of the measured wave field. Errors due to multipath prove to be
significant in the lower troposphere. This indicates that the receiver currently in use needs
enhancement. However, this problem is not principle, it is technical, and upon the opinion of the
majority of the specialists for radio occultations, it can be resolved by implementing open loop
signal tracking. The final purpose of the development of the algorithms for data processing and error
estimation is their application in a system of variational assimilation of radio occultation data into a
model of global atmospheric circulation. The work on the implementation of the described
algorithms in the data assimilation system of DWD is being performed currently.
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Figure 3.2: Radio occultation event 0008, January 18, 2004, UTC 00:48, 37.1◦N 60.2◦E: a) local
spatial spectra for L1 channel, b) local spatial spectra for L2 channel, c) bending angles: computed
for the DWD analysis and retreived from the CHAMP data, d) temperature from the DWD analysis
and retrieved from the CHAMP data.
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