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GRAS SAF Project

The GRAS SAF is a EUMETSAT-funded project responsible for operational processing of
GRAS radio occultation data from the Metop satellites. The GRAS SAF delivers bending
angle, refractivity, temperature, pressure, and humidity profiles in near-real time and offline
for NWP and climate users. The offline profiles are further processed into climate products
consisting of gridded monthly zonal means of bending angle, refractivity, temperature,
humidity, and geopotential heights together with error descriptions.

The GRAS SAF also maintains the Radio Occultation Processing Package (ROPP) which
contains software modules that will aid users wishing to process, quality-control and
assimilate radio occultation data from any radio occultation mission into NWP and other
models.

The GRAS SAF Leading Entity is the Danish Meteorological Institute (DMI), with Coop-
erating Entities: i) European Centre for Medium-Range Weather Forecasts (ECMWF) in
Reading, United Kingdom, ii) Institut D’Estudis Espacials de Catalunya (IEEC) in Barcelona,
Spain, and iii) Met Office in Exeter, United Kingdom. To get access to our products or to read
more about the project please go to http://www.grassaf.org.
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Abstract

The ROPP 1dVar processing is used to perform retrievals using one day of GRAS refractivity
observations and ECMWF background data. Results illustrate the ROPP functionality and
the output diagnostics generated. Tests using different configuration parameter settings and
the error descriptions for optimal solutions are discussed. Results processed using COSMIC
occulations and Met Office forecast model background data are also presented.
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1 Background

The Radio Occultation Processing Package (ROPP) software includes functionality for users
to perform 1dVar retrievals using refractivity or bending angle observations from GPS radio
occultation (GRAS SAF, 2009a). ROPP is used to compute the GRAS SAF NRT products
of temperature profile (GRM-02), specific humidity profile (GRM-03), pressure profile (GRM-
04) and surface pressure (GRM-05) derived from refractivity observations. Further details of
the GRAS SAF 1dVar processing is available in GRAS SAF (2009c).

This report presents refractivity and bending angle 1dVar results processed using the
ROPP (v4.0) tools ropp_1dvar_refrac and ropp_1dvar_bangle . Sensitivity of results
to the choice of setup parameters and assumed errors are presented. This serves to illustrate
the use of ROPP for 1dVar applications and aid users to interpret the output. For further
background and a full description of the ROPP 1dVar processing and user options see GRAS
SAF (2009a). This report is also based on work described by GRAS SAF (2009d).

1.1 1dVar processing

The 1dVar processing aims to finds a maximum likelihood estimate of a vertical atmospheric
profile x, given a set of mobservations yo and some a priori knowledge of the background at-
mospheric state xb (e.g. Lorenc, 1986). This is usually formulated as a minimisation problem
of the cost function

J(x) =
1
2
(x−xb)TB−1(x−xb)+

1
2
(yo−H[x])TO−1(yo−H[x]) (1.1)

H[x] denotes a (possibly nonlinear) forward operator calculating what a measurement y
would be for any given atmospheric state x. The matrices B and O are error covariance
matrices, describing the assumed uncertainties in the background data and the measure-
ments and forward operator respectively. By minimising J with respect to the state vector
x, we obtain a solution that minimises the total deviation against background and observa-
tional data. If all errors are normally distributed and both background and measurements are
unbiased, this solution is also the maximum likelihood solution.

1.2 Input data

1.2.1 Observations

Radio occultation observation data from GRAS from 1 April 2009 were used. The 1dVar
processing with a refractivity profile as the observable used the GRAS SAF GRM-01 NRT
refractivity product as a function of geopotential height while the 1dVar processing with a
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bending angle profile as the observable used the corresponding bending angles as a func-
tion of impact parameter as processed by EUMETSAT. In both cases, profiles were first
thinned onto a set of 247 pre-defined levels using the ROPP thinner routines.

Some results are also presented using refractivity and bending angle observations on 1
April 2009 from the COSMIC mission as processed by CDAAC. These data are output on
300 levels by CDAAC.

1.2.2 Observation error

Observation standard deviations were generated using ropp_1dvar_add_refrac_error
and ropp_1dvar_add_bangle_error tools provided with the ROPP distribution. Two dif-
ferent observation error models were tested.

1. GRAS SAF GRM-07 prototype - observation standard deviations derived using GRAS
SAF NRT data processing method (’TP’). Termed ’GRAS SAF’ in this report.

2. Operational model - observation standard deviations based on error structures used in
operational NWP assimilation at ECMWF and Met Office (’MO’, ’EC’). Termed ’NWP’
in this report.

Figure 1.1 shows a plot of the assumed observation errors.

Figure 1.1: Fractional refractivity error estimates using (a) GRAS SAF tropopause height
error model and (b) Met Office operational latitudinally-varying error model. (c) Assumed
refractivity vertical correlations.

The same observation correlation matrix was used for both error models. For 1dVar using
the refractivity observable an observation correlation matrix was defined as

corrnm = e−(zn−zm)/H

where zn and zm are geopotential heights at points n and m along the profile and H is a
characteristic scale height of 3 km.
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For 1dVar processing using a bending angle observable, the observations at different
levels are considered to be uncorrelated such that the observation covariance matrix is di-
agonal.

1.2.3 Background profiles

Tests were conducted using background data from the ECMWF global NWP forecast model.
Data are provided on 91 pressure-based model levels and the state vector consists of
temperature and specific humidity on each model level and surface pressure. Model fields
from the most recent ECMWF forecast at the closest 3-hourly timestep are linearly interpo-
lated to the same geographic location as an occultation. No time interpolation is performed.
These data are provided to users by the GRAS SAF (’atm ’ files) and are available online
(http://www.grassaf.org).

Some results are also presented using background data from the Met Office global fore-
cast model. In April 2009, data were provided on 50 geopotential height-based model levels
up to a model top of about 65 km. The state vector consists of 50 specific humidity values
(defined on the ’θ ’ model levels) and 51 pressure values (on the ’ρ ’ model levels).

1.2.4 Background errors

Two different background error models for ECMWF data were tested.

1. GRAS SAF 1dVar prototype - mean of profile-by-profile background errors used in
GRAS SAF NRT 1dVar processing based on ’error of the first guess’ variable. The
error estimate on surface pressure is set constant to 1 hPa. Termed ’GRAS SAF’ in
this report. (See Figure 1.2).

2. Operational model - assumed global mean background errors provided by Mike Fisher
(ECMWF). The surface pressure error estimate is 1.2 hPa. Termed ’NWP’ in this report.
(See Figure 1.2).

The GRAS SAF method produces temperature and specific humidity background errors
which are about twice the magnitude of the operational model, leading to larger weighting
of observations in the 1dVar retrieval. Note that only an approximate mean error distribution
was used in this analysis. The GRAS SAF NRT 1dVar processing uses an error description
which varies profile-by-profile. Results reported here are therefore not entirely analogous to
the GRAS SAF NRT products.

In both cases, the same correlations between model levels were used and it is assumed
that there are no cross-correlations between temperature, humidity and surface pressure
(Figure 1.3).

For tests using Met Office background data, the assumed background errors and correla-
tions used in the Met Office operational processing were used (Figure 1.4). Different errors
are defined for the northern hemisphere, tropics and southern hemisphere regions.
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(a) (b)

Figure 1.2: Assumed ECMWF model background errors for (a) specific humidity and
(b) temperature. The ’NWP’ assumed errors are plotted in blue (surface pressure error
1.2 hPa), the ’GRAS SAF’ assumed errors are plotted in red (surface pressure error
1.0 hPa).

(a) (b)

Figure 1.3: Assumed ECMWF model background vertical correlations for (a) specific
humidity and (b) temperature.

(a) (b)

Figure 1.4: Assumed Met Office model background vertical correlations (in the tropics)
for (a) specific humidity and (b) temperature.
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1.3 Configuration options

Except where stated, the following user-configurable parameters were used in the ROPP
processing (see GRAS SAF (2009a) for further details).

A series of tests were conducted to assess the choice of parameters used.

1. Minimiser algorithm: by default quasi-Newton minimisation (minROPP) was used. Tests
were repeated using the Levenberg-Marquardt (LevMarq ) algorithm. GRAS SAF (2008)
provides some example comparisons of 1dVar solutions generated using the two ap-
proaches.

2. Data cutoff limits: by default only GRAS observations between 8 (min_1dvar_height )
and 35 km (max_1dvar_height ) were used in the 1dVar analysis. Tests were also
conducted using all data.

3. Pressure and humidity state variable: by default pressure and specific humidity are
used in the state vector. Tests were also conducted using ln(p) and ln(q) as state
vector variables (use_logp = .true. , use_logq = .true. ).
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VarConfig

Structure element Default Description

...%obs_covar_method VSFC Observation error covariance
method

...%bg_covar_method VSFC Background error covariance
method

...%min_1dvar_height 8 km Min. obs height to include in 1d–
Var

...%max_1dvar_height 35 km Max. obs height to include in
1d–Var

...%bgqc_apply .true. Apply background quality con-
trol?

...%bgqc_reject_factor 10 Data rejected if O-B > factor *
observation standard deviation

...%bgqc_reject_max_percent 50 Maximum % of data rejected

...%pge_apply .false. Apply PGE for quality control?

...%minROPP%method MINROPP minimisation method

...%use_precond .true. Use preconditioning?

...%conv_check_apply .true. Apply additional convergence
checks?

...%conv_check_n_previous 2 Consecutive iterations for con-
vergence

...%conv_check_max_delta_state 0.1 Maximum change in state vector

...%conv_check_max_delta_J 0.1 Maximum change in cost func-
tion

...%extended_1dvar_diag .true. Output additional diagnostics?

...%use_logp .false. Use Log(pressure) in state vec-
tor for 1D–Var?

...%use_logq .false. Use Log(humidity) in state vec-
tor for 1D–Var?

Table 1.1: Configuration options used in 1dVar processing. All other configuration pa-
rameters are as defaults listed in (GRAS SAF, 2009a).
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2 Results: GRAS refractivity, ECMWF background

This section describes quality control and validation of the 1dVar processing applied to 621
GRAS occultations from 1st April 2009 and co-located background data from ECMWF fore-
casts (analysis cycle 35r2). Figures summarise results from a number of different tests con-
ducted (see Section 1).

Of 621 profiles processed, 597 passed initial quality control checks (e.g. O−B checks, data
range checks). Figure 2.1 shows statistics of the relative difference between GRAS refractiv-
ity observations and the forward-modelled ECMWF background (black = (yo−H[xb])/H[xb]).
These are consistent with the data quality monitoring plots available at http://www.grassaf.org.
Biases are smallest between 10 and 35 km, increasing at high altitudes where the refractiv-
ity data are merged with climatology. Also shown in Figure 2.1 are statistics of the relative
difference between the GRAS observations and the forward-modelled 1dVar solution (red
= (yo−H[x])/H[x]). This illustrates how the 1dVar processing draws the background state
towards the observations over the 8 to 35 km height range used in the analysis.

Figure 2.1: Profiles of relative differences between observation and background refrac-
tivity (’[O-B]/B’). The mean bias [O-B]/B (solid black line) and bias ± standard deviation
(dotted black line) are plotted. Also shown is the mean bias [O-A]/A (solid red line) and
bias ± standard deviation (dotted red line), where ’A’ is the 1dVar solution.

2.1 Quality at convergence measures

Convergence is assumed when either the state vector changes by less than the parameter
value conv_check_max_delta_state times the background error or if the cost function
changes by less than conv_check_max_delta_J between successive iterations.
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Number of iterations

Figure 2.2 illustrates that the minROPPminimisation algorithm typically converges to a so-
lution after between 8 and 15 iterations using the ’GRAS SAF’ set of assumed background
and observation errors. The distribution is much more strongly peaked at 6 iterations when
using the ’NWP’ assumed errors. The Levenberg-Marquardt minimisation algorithm typically
converges to a solution in 3 iterations (as illustrated by GRAS SAF (2008) for example).

The GRAS SAF NRT 1dVar processing chain (GRAS SAF, 2009c) uses a number of 1dVar
diagnostic criteria to assess the quality of the output. Profiles are flagged as bad if:

1. The normalised cost function 2J/m value is greater than 5.

2. The minimiser uses more than 25 iterations to converge.

3. The specific humidity at any point in the profile is above saturation.

4. The input refractivity profile was marked as bad.

These criteria are checked in the ROPP 1dVar processing and bad profiles are indicated
by setting the PCD_met bit of the product confidence data (PCD) output variable as non-
nominal and the overall_qual variable to zero (GRAS SAF, 2009b).

Of 597 profiles for which the minimisation was attempted with the default configuration
settings and GRAS SAF assumed errors, 1 (0.17%) failed due to 2J/m exceeding 5, and
2 (0.33%) failed due to the minimisation not reaching convergence (within 50 iterations).
This is consistent with the results of GRAS SAF (2009d) from an analysis using a month of
data. A significantly higher proportion of profiles (3.01%) failed the 2J/m test when using the
LevMarq minimiser with the GRAS SAF errors. However, when using LevMarq with NWP
assumed errors, the proportion of profiles failing the 2J/m test was only 0.5%.

Cost function at convergence, 2J/m

Figure 2.2 shows histograms of 2J/m values (middle column) and the latitude dependence
of 2J/m (right column). Here, J is the cost function at convergence and m is the number
of observations used in the analysis. If the distribution of observation and background data
is perfectly Gaussian, unbiased and well described by the covariance matrices then 2J/m
should have a value of 1.0. For all cases tested, the majority of occultations have 2J/m
less than 1.0. Results using the GRAS SAF assumed errors have significantly larger spread
of 2J/m values than those obtained using NWP assumed errors. There are no significant
differences between the distribution of 2J/m values due to the choice of minimiser algorithm
or humidity state vector variable. Results of tests using observation data from all available
altitudes in the 1dVar analysis (not shown) are also generally similar.
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(a) ’GRAS SAF’ errors, (p,q) state variables, minROPPminimisation

(b) ’GRAS SAF’ errors, ln(p,q) state variables, minROPPminimisation

(c) ’GRAS SAF’ errors, (p,q) state variables, LevMarq minimisation

(d) ’NWP’ errors, (p,q) state variables, minROPPminimisation

Figure 2.2: left column: Number of iterations required for convergence. (Note different
scales on each plot). middle column: histogram of 2J/m values at convergence. right
column: distribution of 2J/m with latitude. The zonal mean is plotted as a solid (red) line.
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Altitude dependence of J

The cost function J (Equation 1.1) represents a summation of deviations of the solution state
from the background and the forward-modelled solution state from the observations (GRAS
SAF, 2009a). The contribution to the cost function from each element of the observation and
background vectors may be described by calculating,

Jobs(i) =
1
2
(yo(i)−H[x]i).

[
O−1(yo−H[x])

]
(2.1)

Jbgr( j) =
1
2
(x( j)−xb( j)).

[
B−1(x−xb)

]
(2.2)

The contribution for each element in the observation or state vector can then be related to
the altitude of that element. Note that values may be positive or negative.

Figure 2.3 shows the mean profile of cost function contributions, normalised by the total J
value (Equation 1.1) for each occultation. The state vector part is further split into the contri-
butions for each temperature and specific humidity element. Use of data between 8 km and
35 km restricts contributions from Jobs to between these altitudes. The distribution of Jobs and
Jbgr results from a balance between the vertical distributions of the assumed errors and the
fit of observations to the background. Rapidly increasing observation errors above 25 km
and below 10 km results in a drop-off of contributions to Jbgr and Jobs since increments of
the state vector from the initial background are reduced. In the upper troposphere and lower
stratosphere the RO observations are well matched to the initial background state, so contri-
butions to Jobs and Jbgr are reduced here and there is a minimum around 17 km. The largest
contributions to Jobs originate from the troposphere between 8 and 12 km where observa-
tion errors are relatively small but biases between observations and the initial background
state may be relatively large for some occultations. Largest contributions to Jbgr (for temper-
ature) originate from the stratosphere between 20 and 30 km where differences between
the observations and background are increased (and thus increments from the background
state are increased) but the assumed errors are relatively small. Contributions to J from the
specific humidity part of the state vector are generally small. The impact of specific humidity
information in the 1dVar retrieval will be increased with the availability of improved refractivity
data below 8 km processed by wave optics methods.

Mean profiles of Jobs from all tests presented in Figure 2.3 are generally similar in mag-
nitude and structure. Sensitivity of results to the 1dVar configuration parameters is more
clearly illustrated by differences in the output Jbgr profiles. Specific points to note are:

1. Minimiser algorithm : Increased Jbgr standard deviations for specific humidity using
the LevMarq minimiser compared with minROPP, very similar contributions from tem-
perature and Jobs.

2. State vector variables : Increased Jobs standard deviations and less pronounced mini-
mum around 17 km when using ln(p,q) state vector variables. Increased Jbgr (temper-
ature) standard deviations, no influence on Jbgr for humidity state vector elements.

3. Assumed errors : Decreased background errors in the ’NWP’ assumed errors setup
leads to smaller increments and reduced Jbgr values. The bi-modal vertical distribution
of temperature Jbgr profile resulting from ’GRAS SAF’ assumed errors is smoothed out
to a single peak around 20 km when using ’NWP’ errors.
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(a) ’GRAS SAF’ errors, (p,q) state variables, minROPPminimisation

(b) ’GRAS SAF’ errors, ln(p,q) state variables, minROPPminimisation

(c) ’GRAS SAF’ errors, (p,q) state variables, LevMarq minimisation

(d) ’NWP’ errors, (p,q) state variables, minROPPminimisation

Figure 2.3: Profiles of contribution to cost function from observations (red), tempera-
ture part of background state vector (blue) and humidity part of background state vector
(green). Solid line: bias, dashed line: standard deviation about the mean.

14



GRAS SAF Report 11 Lewis:ROPP 1dVar validation

2.2 State vector solutions

Figure 2.4 shows the magnitude of increments between the temperature, specific humidity
and surface pressure elements of the background ECWMF state vector and 1dVar solution.

2.2.1 Temperature

Increments are unbiased (< 0.1 K) at all altitudes and standard deviations remain within 1 K
below 30 km. For the default processing setup, largest increments are seen around 35 km
(at the top of the used observations window) and 17 km (where the observation errors are
smallest). The temperature solutions are independent of whether (p,q) or ln(p,q) state vector
variables are used. For 1dVar processing using the LevMarq minimiser, results are generally
similar although the larger increments at 35 km are removed. Temperature increments are
reduced by a factor of about 2 when using the ’NWP’ assumed background and observation
errors (Figure 2.4(d)), since the background is given relatively more weight in the retrieval.

2.2.2 Specific humidity

Although only observations between 8 and 35 km are used in the retrieval, large increments
to the background surface humidity are apparent down to the surface. The specific humidity
increments in Figure 2.4(a) show a negative bias, peaking at about 3 km with a mean value
of -0.16 g/kg. Standard deviations have a maximum value of 0.29 g/kg at the same height.
Use of the ln(p,q) state vector variable (Figure 2.4(b)) results in slightly reduced increments
(mean -0.13 g/kg, standard deviation 0.34 g/kg). In contrast, the LevMarq specific humidity
solutions in Figure 2.4(c) have a much smaller bias (maximum mean 0.02 g/kg, standard
deviation 0.08 g/kg).

The near-surface increments are non-zero since the forward model for an ECMWF back-
ground involves integrating the hydrostatic equation to compute geopotential height (GRAS
SAF, 2009a). The geopotential height calculation is related to specific humidity and tem-
perature through the virtual temperature. Modifications to the state vector at heights where
observations are included in the analysis therefore contribute to near-surface elements of
the state adjoint (as used in the minROPPminimisation) and state tangent linear (as used in
the LevMarq minimisation).

Result using the ’GRAS SAF’ background covariance matrix and minROPPminimiser (Fig-
ures 2.4(a) and (b)) have been found to be strongly sensitive to the details of the precondi-
tioning used before the minimisation. The minROPPminimisation is performed on a control
variable, defined as

control = L−1x (2.3)

where L is a preconditioner related to the background covariance matrix as B = LL T (GRAS
SAF, 2009a). This transformation apparently increases the impact of the background corre-
lations on the humidity increments in particular for the given choice of B matrix. Figure 2.5
shows the increments obtained if only the diagonal elements of B were used in defining the
control variable. In this case, the temperature and surface pressure increments are largely
unaffected, but the maximum specific humidity increment is reduced to only 0.019 g/kg (stan-
dard deviation 0.06 g/kg).
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(a) ’GRAS SAF’ errors, (p,q) state variables, minROPPminimisation

(b) ’GRAS SAF’ errors, ln(p,q) state variables, minROPPminimisation

(c) ’GRAS SAF’ errors, (p,q) state variables, LevMarq minimisation

(d) ’NWP’ errors, (p,q) state variables, minROPPminimisation

Figure 2.4: Increments of ECMWF state vector elements (1dVar solution - background)
for temperature (left column), specific humidity (middle column) and surface pressure
(right column). The mean and mean ± standard deviation are plotted as solid and
dashed lines respectively.
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(a) ’GRAS SAF’ errors, (p,q) state, minROPPminimisation (diagonal preconditioner)

Figure 2.5: Increments of ECMWF state vector elements using only diagonal elements
of B in the minROPPpreconditioner. (1dVar solution - background) for temperature (left
column), specific humidity (middle column) and surface pressure (right column). See
Figure 2.4 for further details.

Applying the diagonal pre-conditioner to a 1dVar retrieval using the ’NWP’ assumed errors
led to much poorer performance however. Solutions did not differ significantly from the back-
ground, and convergence was achieved with very little reduction to the cost function. While
modifying the preconditioning matrix therefore led to improved solutions for retrievals using
the ’GRAS SAF’ errors, it should not be considered a general solution.

The simplest option to generate solutions with small and unbiased humidity increments
would be to use the LevMarq minimiser algorithm. The results shown in Figure 2.5 are
very similar to those obtained using the LevMarq minimiser (Figure 2.4(c)). GRAS SAF
(2008) provided some specific example 1dVar retrievals using minROPPand LevMarq (with
’NWP’ assumed errors, ROPP v1.2). For some cases it was found that the LevMarq method
produced 1dVar solutions with smaller cost function values and which deviate more from
the background profiles. The minROPProutine was found to be typically three times faster
than LevMarq however. For the current set of tests conducted (ROPP v4.1), the LevMarq
processing was found to be only 25% slower than minROPP. The mean CPU time to process
each profile was 0.96 s using minROPPand 1.2 s using LevMarq .

Users requiring the more efficient minROPPalgorithm should consider performing a com-
parison of the minROPPand LevMarq solutions and, if required, adapt the definition of the
preconditioner to limit any systematic features in the solution. The choice of preconditioner
used for one assumed background covariance may not necessarily be appropriate for all
error models. The LevMarq minimiser routine is recommended to most users however. The
processing should currently be efficient enough for most users and no preconditioning is
performed. It is planned to improve the efficiency of the LevMarq minimisation (for release
version ROPP-5) by including a ’K-code’ representation of the tangent linear routines.
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2.2.3 Surface pressure

The pressure value on each ECMWF model level is defined by the surface pressure value
via model level coefficients (GRAS SAF, 2009a). Profiles of the pressure increment (not
shown) indicate that fractional pressure differences are limited to below 15 km, increasing
to a maximum percentage difference at the surface. The right column of Figure 2.4 plots the
distribution of surface pressure increments with latitude. These show a striking negative bias
of about -0.4 hPa for all tests conducted using the ’GRAS SAF’ assumed errors. The 1dVar
solution reduced the surface pressure value for 83% of occultations. Although the bias is
reduced to -0.09 hPa when using the ’NWP’ errors (Figure 2.4), the surface pressure value
is reduced in the solution for 70% of occultations. The surface pressure increments are not
a function of latitude.

The negative surface pressure increment bias is thought to originate from the small nega-
tive refractivity bias against the ECMWF forecast background shown in Figure 2.1. At 20 km,
for example, the mean (O−B)/B value is -0.15%. Assuming temperature and humidity are
kept constant in the analysis, it is possible to reduce the refractivity in the 1dVar solution
by reducing pressure values (since refractivity is directly proportional to pressure). In the
ECMWF model, all background pressure values are reduced by decreasing the surface pres-
sure value. Decreasing pressure at each model level has the impact of increasing the heights
of each level, further improving the match between the background and observed refractivity
profiles in the 1dVar retrieval.

Modified bias test

To test this hypothesis, the 1dVar analysis was re-run after adding a constant 2% positive
bias to the refractivity observations. Figure 2.6 shows the 1dVar solution increments for
temperature, specific humidity and surface pressure. The strong positive refractivity bias is
resolved by increasing the surface pressure (mean increments 3.4 hPa), which increases the
pressure on each model level and decreases the height of each level. There is also some
impact in increasing the tropopspheric specific humidity increments in the 1dVar solution,
but not a large impact on temperature. This result supports the suggestion that the negative
surface pressure increment bias shown in Figure 2.4 results from the negative (O−B)/B
refractivity bias.

Modified background error test

Figures 2.4 and 2.6 illustrate that biases between the initial background and observations
result in relatively strong biases in surface pressure increments using the 1dVar retrieval with
ECMWF model levels and state vector. A further test was therefore run applying the 1dVar
retrieval with a greatly reduced estimate of the surface pressure error of 1 Pa (rather than
1 hPa). Figure 2.7 shows the 1dVar solution increments for temperature, specific humidity
and surface pressure when using a surface pressure error of 1 Pa. The surface pressure
element is now constrained much more closely to the background and the mean increment
is 0.0025 hPa. The temperature and specific humidity increments however are remarkably
similar to those shown in Figure 2.4(c) for the test using the default setup.
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Figure 2.6: Increments of ECMWF state vector elements using 2% biased observations
(1dVar solution - background) for temperature (left column), specific humidity (middle
column) and surface pressure (right column). See Figure 2.4(c) for further details.

Figure 2.7: Increments of ECMWF state vector elements using 1 Pa assumed surface
pressure error (1dVar solution - background) for temperature (left column), specific hu-
midity (middle column) and surface pressure (right column). See Figure 2.4(c) for further
details.

Updated ECMWF background test

An updated 1dVar test was finally run using more recent observations and ECMWF back-
ground data from 10th February 2010. From 13th October 2009, an update was made to the
COSMIC RO processing (at UCAR) which led to modified ECMWF forecast biases relative
to radio occultation observations. Figure 2.8 illustrates this updated bias structure for the
sample day of 10th February 2010.

Figure 2.9 shows the temperature, humidity and surface pressure increments of the 1dVar
solution from the ECWMF background on 10th February 2010. The temperature and specific
humidity increments are generally similar to those on 1st April 2009 (Figure 2.4(c)). The
mean surface pressure increment is -0.16 hPa. The surface pressure is reduced in the 1dVar
solution for only 60% of occultations. The strongly negative bias is therefore reduced since
the bias between ECMWF and GRAS observations has reduced. Further reductions to this
bias might be anticipated when updates to the assimilation of biased aircraft temperatures
are implemented at ECMWF (S. Healy, pers comm).
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Figure 2.8: Relative differences between observation and ECMWF background refrac-
tivity (’[O−B]/B’) for 1 day on 10th February 2010, after the ECMWF biases were ad-
justed by updates to the COSMIC observation processing.

Figure 2.9: Increments of ECMWF state vector elements using data from 10th Febru-
ary 2010. (1dVar solution - background) for temperature (left column), specific humidity
(middle column) and surface pressure (right column). See Figure 2.4 for further details.

2.3 State vector error estimates

The ROPP 1dVar processing computes estimates of the error of the solution in the form of an
error covariance matrix S. Taking the square root of the diagonal element of the covariance
matrix gives and estimated standard error profile (which may be output as temp_sigma,
shum_sigma, pres_sfc_sigma variables in an output ROPP format file).

S=
(
B−1 +H[x]O−1H[x]T

)−1
(2.4)

Comparing this error with the background error estimate gives an indication of how much
information was gained from the observation. Figure 2.10 shows the solution standard error
profiles for tests using the default setup with ’GRAS SAF’ and ’NWP’ assumed background
errors. These results were found to be independent of the choice of minimisation algorithm
or form of humidity and pressure state vector variables. The magnitude and structure of
the solution errors is very similar when using either choice of error definitions. As such,
the observations are considered to provide more information to the solution when using the
’GRAS SAF’ background errors than when using the smaller ’NWP’ errors.
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(a) ’GRAS SAF’ errors, (p,q) state variables, LevMarq minimisation

(b) ’NWP’ errors, (p,q) state variables, LevMarq minimisation

Figure 2.10: Background (red) and 1dVar solution (grey) error estimates for temperature,
specific humidity and surface pressure.

2.4 Refractivity error estimates

The background and solution error covariance matrices can also be converted into estimated
error covariances in refractivity-space through the tangent linear of the forward-model oper-
ator H. Taking the square root of the diagonal element of the covariance matrix gives an
estimated standard error profile (which may be output as refrac_sigma variable in an out-
put ROPP format file). Note that this estimate ignores errors associated with the interpola-
tion performed by the forward model. This results in an oscillatory structure at high-altitudes
where the model levels are further apart and the interpolation is more important to the solu-
tion.

So = H[x]BH[x]T (2.5)

Figure 2.11 compares the mean assumed observation error with the background error, for-
ward modelled into refractivity-space following Equation 2.5 (optionally output as additional
diagnostic variable B_sigma ), and the solution error. This is further demonstration of the im-
proved solution errors in the height range 10 to 35 km, and reduced impact of observations
using the ’NWP’ error model.

Also plotted in Figure 2.11 are comparisons of the (O−B)/B and (O−A/A) standard
deviations (as shown in Figure 2.1) with an estimate of the expected errors (GRAS SAF,
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2009d).

σ

[
(O−B)

B

]
≈

√
(σo)2 +

(
σB

O
B

)2

B
(2.6)

Note that O and B here denote the observation and (forward-modelled) background pro-
files and not the covariance matrices. The statistical and estimated curves coincide nicely
in the height range 10 to 35 km in Figure 2.11(a) for the tests using the ’GRAS SAF’ as-
sumed errors. At high and low latitudes the observed standard deviations are smaller than
the input error estimates. At low latitudes this is because only those profiles with high mea-
surement quality tend to reach the surface (low humidity, no sharp refractivity gradients). At
high altitudes, deliberately inflated observation errors are used so as not to introduce known
observation biases into the 1dVar solution. Figure 2.11(b) shows generally smaller observed
standard deviations at all altitudes when using the ’NWP’ error model, since the input errors
are chosen to be conservative in the amount of information provided by the observations
in the solution. These results are independent of the choice of minimiser and state vector
humidity and pressure variable.

(a) ’GRAS SAF’ errors, (p,q) state variables, LevMarq minimisation

(b) ’NWP’ errors, (p,q) state variables, LevMarq minimisation

Figure 2.11: left column: Mean refractivity error estimates on observation, background
and solution profiles. middle column: Error estimates on (O−B)/B for each profile com-
puted by Equation 2.6 (thin grey lines) compared with the calculated (O−B)/B standard
deviation (black line). right column: As in middle column but for deviation of the solution
(A) from the observations (O−A)/A.
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2.5 Results: GRAS bending angle, ECMWF background

Tests were also conducted using the ropp_1dvar_bangle tool to perform a 1dVar retrieval
using GRAS bending angle observations. The results are similar to those previously dis-
cussed using refractivity observations. Figure 2.12 provides some summary plots of output
using the default test setup with LevMarq minimisation.

Figure 2.12: Summary of 1dVar results using GRAS bending angle observations and
ECMWF background. 1dVar using (p,q) state vector variable and LevMarq minimiser.
See Figures 2.1, 2.4 and 2.11 for plot details.
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2.6 Results: GRAS refractivity, Met Office background

Observations from a day of GRAS occultations were also used in a 1dVar retrieval with Met
Office forecast model background data. Pressure and specific humidity are used in the state
vector and the background is on height-based model levels. Observation and background
errors are a function of latitude. Figure 2.13 summarises the results. The conservative back-
ground errors leads to relatively small increments from the background in the 1dVar solution.

Figure 2.13: Summary of 1dVar results using GRAS refractivity observations and Met
Office background. 1dVar using (p,q) state vector variable and LevMarq minimiser. See
Figures 2.1, 2.4 and 2.11 for plot details.
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2.7 Results: COSMIC refractivity, Met Office background

Figure 2.14 summarises the results of running ropp_1dvar_refrac using a day of refrac-
tivity observations from COSMIC and collocated Met Office background data. Observations
between 0 km and 35 km are used in the retrieval. Results are generally similar to those
using data from GRAS, although the inclusion refractivity data processed using wave optics
in the lower troposphere leads to increased specific humidity increments.

Figure 2.14: Summary of 1dVar results using COSMIC refractivity observations and Met
Office background. 1dVar using (p,q) state vector variable and LevMarq minimiser. See
Figures 2.1, 2.4 and 2.11 for plot details.
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3 Summary

A series of 1dVar tests have been conducted to demonstrate the application of the ROPP
1dVar tools and algorithms to retrieve temperature, humidity and pressure information from
radio occultation observations. The ROPP 1dVar processing is used to generate the GRAS
SAF NRT temperature, specific humidity, pressure and surface pressure products (GRM-02,
GRM-03, GRM-04, GRM-05).

One of the main outcomes of this study is the sensitivity of near-surface specific humid-
ity generated using the minROPPminimiser to the preconditioning. Users should be aware
that one method of preconditioning is not necessarily appropriate for all choices of the back-
ground covariance matrix. The LevMarq minimisation method does not require precondi-
tioning, and is therefore considered more appropriate for most 1dVar applications. It is in-
tended that ’K-code’ functionality in the ropp_fm forward model module will be provided
in a future update release (ROPP-5), which will improve the efficiency of the 1dVar using
LevMarq .

A second outcome is an understanding of the negative surface pressure increments found
for 1dVar retrievals using ECMWF background data. A number of tests show that these are
consistent with known biases between the ECMWF background and observations. The up-
dated COSMIC processing after 13th October 2009 has led to decreased surface pressure
increments. Further changes should be expected after modifications to the treatment of air-
craft temperatures in the ECMWF assimilation system. This study highlights the utility of the
ROPP 1dVar tools for testing the impact of model and observation processing changes on
retrieved profiles. The sensitivity of surface pressure increments to biases in the ECMWF
background is much greater than found for retrieved temperature or specific humidity pro-
files, and these data (GRAS SAF product GRM-05) should therefore be treated with caution
by users.
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