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Abstract

This report describes the modelling of the L1 and L2 bending angles by means of a simple idealised
ionosphere consisting of a single Chapman layer. There are three main reasons for doing this:

• The desire for an improved interpolation/extrapolation of the L1 – L2 bending angle difference
where either signal (but especially L2) drops out;

• The wish to make retrievals using observational data that are closer to what is observed, rather
than the ionospherically corrected neutral bending angles that are usually used;

• It allows the sensitivity of the observed bending angles with respect to the unknown ionospheric
parameters to be assessed.

Sensitivities to horizontal gradients and to the shape and size of the model ionosphere are briefly
examined before calculating the bending angles induced by a single Chapman layer. The feasibility of
making retrievals directly with L1 and L2, and with L1 alone, are studied in a simple ‘toy’ system, and
the results are compared against retrievals made in the same system with the usual ionospherically
corrected bending angles. All GRAS occultations within a five day period have their L1 – L2 bending
angle differences modelled by this theory, and the derived ionospheric parameters are examined.
Areas for further study are suggested.
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1 Introduction

Above about 60 km, the ionosphere generally makes the biggest contribution to the bending of radio
occultation (RO) signals. This bending is usually removed during pre-processing of the signals from
the two (L1 and L2) RO channels, by exploiting the dispersive nature of the ionosphere to radio waves.
This isolates the bending produced by the neutral atmosphere, which is of greater interest in most
cases.

Sometimes, however, the L2 signal drops out, especially at lower altitudes. Some sort of extrapola-
tion of the observed signal is therefore required before it can be combined with the L1 signal in order
to remove the ionospheric contribution to the bending. Direct modelling of the ionospheric bending
of the two signals might offer a better way of doing this extrapolation than the current procedure —
linear extrapolation of L1 – L2 — because it would be based on all the available profile information,
not just that in the locality of the missing data. It might also offer the possibility of using either signal,
or both, directly, without the need for any ionospheric correction. L1 and L2 have smaller fractional
errors above about 60 km than the very small neutral bending angle at these heights. This may or
may not lead to better retrievals. Finally, direct modelling of the ionosphere might offer the possibility
of retrieving some information about the ionosphere from RO profiles.

For all these reasons, it is worth examining the bending angles produced by a model ionosphere.
This report describes some first steps along that path. Sec 2 describes the background theory of iono-
spheric bending, and pays particular attention to the effects of spherical asymmetry. Sec 3 examines
the sensitivity of the bending angles to the size and shape of a spherically symmetric ionosphere,
before Sec 4 reports details of the bending induced by one particular model ionosphere — a Chap-
man layer — which forms the basis of the later work in the report. The detailed calculations appear
in Apps A and B. Secs 5 and 6 present the results of some preliminary studies using these ideas
on idealised and real RO data respectively. Sec 7 summarises the work and suggests future areas of
study.
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2 Background theory

2.1 Spherically symmetric ionosphere

The usual formula for the bending angle α at impact parameter a in a spherically symmetric atmo-
sphere of refractive index n is given by (eg Rodgers, 2000 [13]):

α(a) =−2a
∫

∞

a

dlogn/dx√
x2−a2

dx (2.1)

where x = nr, and logn≈ n−1 for |n−1| � 1.

In the ionosphere, radio waves excite plasma oscillations, which affect the phase and group veloc-
ities of the wave. The high frequency refractive index in such a medium, in the absence of electric or
magnetic fields, is given by (eg Sec 32–7, Feynman, 1964 [7]):

n2 = c2k2/ω
2 = 1−ω

2
p/ω

2 < 1 (2.2)

where ω2
p, the square of the plasma frequency, equals nee2/meε0, ne being the electron number density

and the other symbols having their usual meanings.

In a plasma, therefore, cphase = ω/k > c and cgroup = dω/dk = c2/cphase < c.

Typically in the ionosphere, ne ∼ 1012 m−3 which implies ωp ∼ 5×107 s−1, while at RO frequencies
ω = 2π f ∼ 1010 s−1, which means that ωp� ω so that we can write

n−1≈ ω
2
p/2ω

2 =−k4ne/ f 2 (2.3)

where k4 = e2/8π2meε0 = 40.3 m3 s−2.

Therefore, the ionospheric contribution to the bending angle at frequency f is given by

α(a) = 2a
k4

f 2

∫
∞

a

dne/dx√
x2−a2

dx. (2.4)

Naively integrating by parts, we obtain

α(a) = 2a
k4

f 2

[
ne(x)√
x2−a2

]∞

a
+2a

k4

f 2

∫
∞

a

x ne(x)
(x2−a2)3/2 dx. (2.5)

We cannot usually integrate Eqn (2.1) by parts because a non-zero n(a) would cause a divergence
in both parts. But for a vertically localised region of refractivity, sited well above tangent points of
interest, the first term in Eqn (2.5) vanishes and we are left simply with

α(a) = 2a
k4

f 2

∫
∞

a

x ne(x)
(x2−a2)3/2 dx. (2.6)

Note that this is always positive, whatever the shape of ne(x). This is not entirely obvious from the
original dne/dx expression, Eqn (2.4). (The ‘geometrical factor’ (x2− a2)−1/2 is clearly crucial here:
without it, Eqn (2.4) would integrate to zero for sufficiently rapidly decaying ne(x).)
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Schematic ∂n/∂θ = 0 slab ionosphere
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Figure 2.1: Schematic picture of ray bending. Top (a): spherically symmetric ionosphere.
Bottom (b): ionosphere with constant horizontal refractive index gradient.
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The physical reason for the positive sign of the bending follows from an examination of the bending
induced by a ‘slab’ ionosphere — a uniform electron density between two spheres of radii r0±H, say.
The geometry is shown in the top panel of Fig 2.1.

Note that the ‘kicks’ suffered by the ray as it enters and leaves the slab are of different sign, but
that because φ2 < φ1, on account of the spherical geometry, φ3 = sin−1(nsinφ2) < sin−1(nsinφ1) = φ0.
Hence the net kick is towards the Earth — that is to say, positive. Pictorially, the ionosphere is shaped
locally like an upturned prism made of a material with n < 1, which means that this prism diverges the
rays, and the bending is therefore towards the Earth. Since any spherically symmetric ionosphere can
be thought of as an ‘onion’ of thin slabs like this, the bending must always be positive, as Eqn (2.6)
shows mathematically. (This argument does not depend on PM being perpendicular to OM.)

We can easily calculate the bending caused by the slab ionosphere displayed in Fig 2.1a from first
principles. Writing the ionospheric refractive index as n = 1− δ , where δ = const > 0 but � 1, and
working to first order in δ , we have:

Snell’s law at P: sinφ0 = nsinφ1 =⇒ φ1 = φ0 +δ tanφ0 (2.7)

Snell’s law at Q: sinφ3 = nsinφ2 =⇒ φ3 = φ2−δ tanφ2 (2.8)

Bending: α = φ3 +θ1−π/2 in general (2.9)
= (φ3−φ2)+(φ1−φ0) in this case, as PQ is a straight line. (2.10)

These equations imply

α = δ tanφ0−δ tanφ2 (2.11)
≈ δ sec2

φ0 (θ1−θ0) to first order in (θ1−θ0). (2.12)

Now, sinφ2/(r0−H) = sinφ1/(r0 +H) (by the sine rule) = sinφ0/(r0 +H)+O(δ )1 = a/(r2
0−H2)+O(δ ).

Thus, from Eqn (2.11), to first order in δ ,

α = aδ

[(
(r0−H)2−a2)−1/2−

(
(r0 +H)2−a2)−1/2

]
(2.13)

= 2a δ r0H(r2
0−a2)−3/2 to first order in H/r0. (2.14)

For future reference, the bending angle Eqn (2.13) can be expressed in terms of the vertically
integrated total electron content, TEC, which is defined as

TEC =
∫

nedr. (2.15)

In this case, TEC = 2Hδ ( f 2/k4), and therefore the bending angle in Eqn (2.13) can be written:

α(a) = a
k4

f 2
TEC
2H

[(
(r0−H)2−a2)−1/2−

(
(r0 +H)2−a2)−1/2

]
. (2.16)

1Note that H/r0 ∼ 100/6700∼ 1.5%, whereas δ ∼ 10−5, so the ‘geometry’ effects dominate the ‘refractivity’ effects in these
calculations. In reality, RQPM in Fig 2.1a is very nearly straight.
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2.2 Effect of horizontal gradients

We briefly examine the effects of a weak violation of spherical symmetry, because horizontal gradients
of electron density are often cited as a possible explanation of the negative ionospheric bending
angles sometimes observed with the operational GRAS instrument (von Engeln, 2011 [17]).

In the presence of horizontal gradients, the path of the ray through the ionosphere is no longer
straight. This clearly affects the entry angle φ3 at Q. Might the overall bending now be negative? If so,
how large a horizontal refractivity gradient would be needed for this to happen? To get a first answer
to these questions, we examine the impact on the ray path of a small, uniformly varying refractive
index in the slab ionosphere, as sketched in Fig 2.1b.

Thus, we postulate
n(θ) = 1−δP +G(θ −θ0), (2.17)

and work to first order in the perturbation G. We therefore assume that the change in (n−1) over the
path is much less than (n−1), ie that |G(θ1−θ0)| � δ .

In plane polar coordinates (r,θ), the Euler-Lagrange equation which results from applying Fermat’s
principle that the travel time between P and Q be stationary, ie

δ

∫
n ds = 0, (2.18)

implies
d
dr

{
nr2θ ′√

1+(rθ ′)2)

}
=
√

1+(rθ ′)2 ∂n
∂θ

. (2.19)

If ∂n/∂θ = G = constant, then, since ds/dr =
√

1+(rθ ′)2 and sinφ = rθ ′/
√

1+(rθ ′)2 (where φ is
the angle between the radial vector and the direction of the ray), we have

nr sinφ −Gs = constant = (1−δP)(r0−H)sinφ
′
1−GsP (2.20)

The quantity nr sinφ −Gs is therefore the analogue of the impact parameter — the “constant of the
motion” — when ∂n/∂θ = G = constant. On the right hand side, the constant has been evaluated
just inside the ionosphere at P in Fig 2.1b, where the ray has the angle of incidence φ ′1 which is now
given, by analogy with Eqn (2.7), by

φ
′
1 = φ0 +δP tanφ0. (2.21)

δP (= δ (θ0)) in Eqn (2.21) equals δ in Sec 2.1; hence φ ′1 = φ1.

If G = ∂n/∂θ = 0, Eqn (2.20) correctly integrates to give r(θ) = (r0−H)sinφ1 csc(φ1− (θ −θ0)): the
straight line through P at the angle θ0 + φ1 to OM in Fig 2.1a. Following the perturbative approach
described above, we therefore write

r(θ)/(r0−H) = sinφ1 csc(φ1− (θ −θ0))+Gg(θ) (2.22)

in the general case, where g is O(1) and g(θ0) = 0 since the ray still passes through P. We seek the
g(θ) which satisfies, to first order in G, Eqn (2.19). n(θ) is given by Eqn (2.17) and r(θ) by Eqn (2.22),
which equation also shows that

sinφ = (1+(r−1dr/dθ)2)−1/2 = sin φ̃
{

1−Gsin φ̃ cos φ̃ cscφ1
[
g′(θ)sin φ̃ −g(θ)cos φ̃

]}
, (2.23)

where φ̃ = φ1 +θ0−θ is the ‘straight line’ value of φ , along PQ in Fig 2.1a.

10
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The ray path distance from P, s−sP, can be assumed to be the unperturbed value, since it is already
multiplied by G in Eqn (2.20):

s(θ)− s(θ0) = (r0−H)sinφ1
[
cot φ̃ − cotφ1

]
. (2.24)

Substituting all these in Eqn (2.22) we get, to leading order in all small quantities,

g(θ) =−1/2cosφ1 csc3
φ1(θ −θ0)2 (2.25)

Therefore, if G = ∂n/∂θ < 0, r(θ) in Eqn (2.22) is greater than it would be in the spherically sym-
metric, unperturbed case, which makes sense.

The ray exits the ionosphere at the point Q′, at angle θ ′1 to OM in Fig 2.1b. This is given to leading
order by

θ
′
1 = θ1 +1/2G tanφ2 cosφ1 csc3

φ1(θ1−θ0)2. (2.26)

The angle of the ray to the normal at Q′ is given, to first order in G and (θ1−θ0), by

φ
′
2 = φ2 +Gcotφ1(sinφ2/sinφ1)3(θ1−θ0). (2.27)

Note that the path deviates from PQ by a term quadratic in (θ − θ0) (Eqn (2.25)), which means
that its direction, which is what affects φ2, varies linearly with (θ −θ0) (Eqn (2.27)). This dependence
dominates the remaining calculations.

The angle of the ray on entry to the ionosphere at Q′ is given by

φ
′
3 = φ3 +G

(
tanφ2 + cotφ1(sinφ2/sinφ1)3)(θ1−θ0), (2.28)

by analogy with Eqn (2.8).

Finally, then, the overall bending is given, to first order in G and ∆θ = (θ1−θ0), by

α
′ = φ

′
3 +θ

′
1−π/2 by analogy with Eqn (2.10)

= α +(φ ′3−φ3)+(θ ′1−θ1) also from Eqn (2.10)
= δP(tanφ0− tanφ2)+G(tanφ2 + cotφ1(sinφ2/sinφ1)3)∆θ , (2.29)

from Eqns (2.11), (2.26) and (2.28).

Thus, a sufficiently large negative horizontal refractive index gradient G could, in this theory, cause
negative bending angles. The minimum such gradient is found by setting α ′ = 0 in Eqn (2.29). This
is the situation sketched in Fig 2.1b. The mean TEC over PQ′ is proportional to δ at the mid-point of
PQ, δPQ/2 say, = δ ((θ1 +θ0)/2) = δP−G∆θ/2, which means that (using φ3 ≈ φ2 and φ1 ≈ φ0)

α
′ ≤ 0 =⇒ G/δPQ/2 ≤ −2(tanφ0− tanφ2)

(tanφ0 + tanφ2 +2cotφ0(sinφ2/sinφ0)3)∆θ
(2.30)

→ − tanφ as H→ 0, (2.31)

where φ is the angle between OM and the centre of PQ(′), ie tanφ = a/
√

r2
0−a2.

The full expression on the right hand side of Eqn (2.30) is plotted in Fig 2.2 for a practical range of
r0, a and H. There is not a strong variation, and the expression is fairly well approximated by the limit
in Eqn (2.31). This limit sheds an interesting physical light on the problem. For, if we were to ignore
the curvature of the ray along PQ′, and further assume that Q≈ Q′ and φ ′2 ≈ φ2, then by analogy with
Eqn (2.11) we would find the bending angle to be

α
′ = δP tanφ0−δQ tanφ2 = (δPQ/2 +G∆θ/2) tanφ0− (δPQ/2−G∆θ/2) tanφ2 (2.32)
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Minimum |TEC-1∂TEC/∂θ| needed for negative bending
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Figure 2.2: Minimum |G/δPQ/2| needed for negative bending (Eqn (2.30)) as a function of
H/r0 and a/r0. Typical ionospheric values highlighted. Contours at tanφ (Eqn (2.31)) and
tanφ csc2 φ (Eqn (2.34))shown in red.
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which would be negative if

G/δPQ/2 ≤ −2(tanφ0− tanφ2)
(tanφ0 + tanφ2)∆θ

(2.33)

→ − tanφ csc2
φ as H→ 0. (2.34)

The difference between limits (2.34) and (2.31) is due to the cotφ0 term in Eqn (2.30), which
ultimately derives from φ ′2− φ2 in Eqn (2.27). But in practice φ is close to π/2, which makes the
numerical difference between Eqns (2.31) and (2.34) rather small. Hence, we can roughly estimate
the extra bending induced by horizontal TEC gradients by simply accounting for the difference in
refractive index at P and Q(′).

This analysis suggests that to get significant difference from the ‘baseline’ positive bending in-
duced by a homogeneous ionosphere, we would need significant changes in the TEC itself: the
curvature of the ray path is unlikely to be sufficient. And this does indeed follow from the fact
that G∆θ/δPQ/2 = ∆TEC/TEC, the fractional change in TEC over the ray path PQ′. Using ∆θ ≈

2a(H/r0)/
√

r2
0−a2 (∼ 0.1) and a≈ r0(≈ RE), we finally deduce

α
′ ≤ 0 =⇒ |∆TEC/TEC| ≥ H/(r0−a) (∼ 0.4) (2.35)

(All numerical estimates are for typical ionospheric parameters H = 100 km, r0 = RE + 300 km,
a = RE +50 km.)

An equivalent expression to Eqn (2.35) has been derived independently (Syndergaard, 2012 [16]).

A 40% change in TEC over a distance r0∆θ ∼ 670 km is rather large2. Fig 2.3a shows an in-
stantaneous TEC map produced by CTIPe, the state of the art Coupled Thermosphere Ionosphere
Plasmasphere Electrodynamics Model run by the US Space Weather Prediction Centre ([5]). Fig 2.3b
shows the fractional change in TEC over 670 km. The resolution of the gridded data is 18 ◦ longitude
by 2 ◦ latitude. The fractional change in TEC, ∆TEC/TEC, is less than 40% over almost all of the do-
main, only exceeding it either side of the global maximum, or where the TEC itself is quite low. (The
occultation plane would need to be aligned with this gradient to see the full effect, of course.) And
this ∆TEC/TEC gives zero net bending. Significant negative bending, as negative as the unperturbed
bending is positive, would require ∆TEC/TEC to be twice as large as this. And to avoid cancellation
during the traversal of the other section of ionosphere on the other side of the tangent point, a similar
refractivity gradient would need to appear, reversed, an angle 2θ0 ∼ 30o away. In other words, to ob-
tain negative bending, the tangent point needs to be near a fairly strong minimum in the TEC. There
are no such minima in Fig 2.3, although they are plausible.

In summary, we therefore conclude that horizontal TEC gradients could produce negative bending
angles, but that, according to this model, they are likely to be rather uncommon.

2Large enough to stretch the small G approximation used in this analysis to breaking point, sadly. But we have still shown
that small gradients are not sufficient to induce negative bending, even if the theory cannot give reliable estimates of
the magnitude of gradients large enough to do so.
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Figure 2.3: Example TEC distribution from the CTIPe model. Top: instantaneous value at
12Z 16/07/2012. Bottom: magnitude of fractional change in TEC over nominal ionospheric
ray path of 670 km. 40% contour highlighted.
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3 Sensitivity of L1 and L2 to the model ionosphere

In this Section we examine the sensitivity of the ionospheric bending angles to the shape and size
of the ionospheric electron density profile, by calculating the L1 bending angle profiles, Eqn (2.4), for
a variety of 1–D spherically symmetric model ionospheres. The models are briefly described before
their solutions are compared.

3.1 Delta function ionosphere

A useful limiting case is obtained by considering a vanishingly thin ionosphere whose peak electron
density increases in such a way that the TEC is finite. Such an electron density profile is given by1

ne(r) = TEC δ (r− r0). (3.1)

Eqn (2.6) applies in this case and implies

α(a) =


2a(k4/ f 2)TEC r0(r2

0−a2)−3/2 for a− r0 < 0

0 for a− r0 > 0
(3.2)

Note the modest increase in bending angle with impact parameter a, until we approach r0, the lo-
cation of the delta function. (Contrast with the neutral bending angle which falls roughly exponentially
with a.) The ionospheric bending angle is also proportional to TEC.

3.2 Slab ionosphere

We can get a feeling for the senitivity to the finite width of the ionosphere by modelling a uniform
density slab ionosphere between r0±H:

ne(r) =
TEC
2H

(S(r− r0 +H)−S(r− r0−H)) . (3.3)

where S is the unit step function (S(x) = 1 for x > 0, S(x) = 0 otherwise).

Eqn (2.4) applies in this case and implies

α(a) =



2a(k4/ f 2)(TEC/2H)
[(

(r0−H)2−a2
)−1/2−

(
(r0 +H)2−a2

)−1/2
]

for a− r0 <−H

−2a(k4/ f 2)(TEC/2H)
[(

(r0 +H)2−a2
)−1/2

]
for |a− r0|< H

0 for a− r0 > H

(3.4)

Note that, correctly, the a < r0 + H solution is precisely twice as large as the ‘entry point’ bending
angle calculated from first principles in Eqn (2.16).

1The theoretical objection to supposing an infinite electron density, as implied by a finite TEC spread over an ionosphere
of vanishing thickness, alongside the |n− 1| � 1 approximation implicit in Eqn (2.3), is easily overcome. For, a typical
TEC of 1017 m−3 dispersed over just a 100 m thick ionosphere still has, at RO frequencies, n−1∼ 2×10−3� 1. Since
100 m can be considered thin enough to be negligible in this problem, both approximations can hold at the same time.
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3.3 Exponential ionosphere

We can get a feeling for the sensitivity to a long tail on the spaceward side of the ionosphere by
considering a piecewise exponential electron density beyond r0:

ne(r) =
TEC
2H

exp(−u/2)S(r− r0). (3.5)

where u = (r− r0)/H.

Eqn (2.4) now has the closed form solution (after approximating
√

r2−a2 ≈
√

r0 +a
√

r−a ),

α(a) =


2a(k4/ f 2)TEC

2H
1√

r2
0−a2

[
1−
√

πl/2 el/2 erfc (
√

l/2)
]

for a− r0 < 0

2a(k4/ f 2)TEC
2H

1√
r0+a ·−

√
π/2H el/2 for a− r0 > 0

(3.6)

where l = (r0−a)/H and erfc is the usual complementary error function (eg Chap 7 Abromowitz and
Stegun, 1965 [1]).

For the record, there is an analytical solution to the unfactorised Eqn (2.4) for a > r0, namely

α(a) = 2a(k4/ f 2)
TEC
2H
·− 1

2H
er0/2HK0(a/2H), (3.7)

where K0 is a modified Bessel function of the second kind (eg Chap 9 Abromowitz and Stegun, 1965
[1]).

3.4 Gaussian ionosphere

A smooth but symmetric variation in the electron density either side of the peak can be modelled by
a Gaussian electron density distribution:

ne(r) =
TEC

2
√

πH
exp(−u2/4) (3.8)

where u = (r− r0)/H.

Eqn (2.4) cannot apparently be integrated in closed form for this electron density distribution, so
we evaluate it numerically — a calculation which is aided by the substitution x = acoshu.

3.5 Chapman layer ionosphere

The asymmetric Chapman layer profile (Chapman, 1931 [4]) is often taken as a first order realistic
model of the electron distribution in an ionospheric layer:

ne(r) =
TEC√
2πeH

exp
(

1
2
(1−u− e−u)

)
(3.9)

where u = (r− r0)/H.

The Gaussian and exponential profiles have the same shape as the Chapman profile near its peak
and over its long tail, respectively (if they have the same H). The calculation of the bending angle
generated by a Chapman layer ionosphere is given in Sec 4. Here we calculate the bending by
integrating Eqn (2.4) numerically.
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3.6 Comparison

All five model electron density profiles are plotted in Fig 3.1a. They have been normalised to have
the same TEC (1017 m−2), peak height (300 km) and, except for the delta function, standard deviation
about the peak (50 km). The resulting ionospheric bending angle profiles (for the L1 signal at f ≈
1.6 GHz) are shown in Fig 3.1b. They are clearly very different over the range of impact heights
a−RE shown (0–600 km). All show a steady increase with a as the ionospheric peak is approached
from below, followed by a decrease above the peak, except for those that vanish. This much follows
from Eqn (2.4). However, for impact heights of interest in routine operational RO measurements, say
0–100 km, the bending angle profiles are much more similar. This is borne out by Fig 3.1c, which is a
zooms in on the bottom 100 km of the bending angle profiles of Fig 3.1b. This figure shows that even
at 100 km, the various bending angle profiles only differ by about 50% at most. This suggests that
once the TEC, peak height and standard deviation of the electron density profile are fixed, there is
little sensitivity to the precise shape. Fig 3.1d examines the sensitivity to doubling and halving TEC, r0
and H in the slab model, Eqn (3.4), after adding a nominal ‘neutral’ bending angle profile as produced
by a dry isothermal atmosphere at a temperature of 300 K and a scale height of 8 km. (This device
shows that L1 and L2 are only really distinguishable from the neutral profile above about 50 km.)
Here we do see some sensitivity, particulary to r0. In this case H = 87 km, so reducing r0 to 150 km
brings the bottom edge of the slab down to about 63 km, which is why the bending angle profile
diverges at that height. And siting the ionosphere twice as far away, by doubling r0−RE to 600 km,
naturally reduces its impact on bending angles near the Earth. There is little sensitivity to halving H,
which shows that we are close to the delta function limit in this instance. The variation with TEC is
the straight proportionality embodied in Eqn (3.4).

In summary, the ionospheric bending angles are sensitive to the gross paramaters defining the
ionosphere, but not to the subtleties of its electron density profile. We are therefore justified in choos-
ing to study one particular density distribution whose TEC, peak height and width are variable. This
is the subject to which we now turn.
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Figure 3.1: Sensitivity of bending angle to ionospheric parameters. Top left (a): Model
electron density distributions. Top right (b): Ionospheric bending angle profiles. Bottom left
(c): Ionospheric plus neutral bending angle profiles of (b), zoomed in on 0–100 km. Bottom
right (d): Sensitivity to doubling and halving TEC, r0 and H in the slab model, Eqn (3.4).
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4 Bending induced by a Chapman layer ionosphere

The involved mathematical details of the evaluation of Eqn (2.4) when ne(x) is given by Eqn (3.9) are
given in App A. The conclusion is that the bending angle α at impact parameter a, at frequency f ,
induced by a Chapman layer of thickness H, centred at r0, having a total electron content TEC can
be written as:

αi(a) = α(a, fi) =
k4

f 2
i

TEC

√
2r2

0a2

πH3(r0 +a)3 Z
(

r0−a
H

)
(4.1)

where the dimensionless, order 1, function Z is defined by

Z(l) =
∫

∞

−l

(e−3u/2− e−u/2)exp(−1
2 e−u)

√
u+ l

du. (4.2)

The function Z describes most of the variation of bending angle with height, since the other factors
in Eqn (4.1) only vary slowly over the range of impact parameters a of interest. Crucially, Z depends
only on the parameter l = (r0−a)/H, the distance from the peak of the Chapman layer expressed in
widths of the layer. For practical RO applications, 2 . l . 10.

Various methods of calculating Z(l) are described in App A. For practical purposes in the rest of
this paper we settle on the Padé approximation Eqn (A.27) detailed in Sec A.5, as it is much quicker
to evaluate than direct numerical integration, and accurate enough (within 2.2%).

Z(l) is sketched in Fig A.1, as is the fractional error in the Padé approximation to it. The biggest
error in the region not shown is about 1.8% at l ≈ 20.
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5 Theoretical feasibility of making a retrieval using L1 and L2 directly

Given that we can calculate the bending from a single Chapman layer according to Eqns (4.2) and
(A.27), it is reasonable to ask whether it is worth doing so. Might it give better retrievals than using the
ionospherically corrected neutral bending angle, as we do now? And even if the L2 signal dropped
out completely, might the L1 signal alone be able to generate a useful retrieval? To throw some
light on these questions we have carried out some one-dimensional variational retrieval (‘1D–Var’)
experiments on a very simple 0-D model of an atmosphere, which comprises a single Chapman layer
of ionospheric parameters TEC, H, r0 above a dry, uniform temperature (=T ) atmosphere at surface
pressure p∗. (A constant absolute temperature is not such a poor theoretical approximation.) The
bending angles in this simple model atmosphere are as follows:

αL1,2(a) = αn(a)+αi1,2(a) (5.1)

where

αn(a) =
k1 p∗

T

√
2πga
RT

exp
(
−g(a−RE)

RT

)
(5.2)

is the neutral bending, and (after rewriting Eqn (4.1) in terms of the peak electron density of the
Chapman layer, nmax

e = TEC/
√

2πeH),

αi1,2(a) = (k4/ f 2
L1,2)n

max
e

√
4er2

0a2

H(r0 +a)3 Z
(

r0−a
H

)
(5.3)

is the ionospheric bending at the two frequencies L1 and L2.

There are five elements in the state vector x = {T, p∗,nmax
e ,r0,H}, and the analytic form of the

forward model H allows easy generation of the tangent linear matrix K = ∂H/∂x, which is needed in
the cost function minimisation. We use nmax

e rather than TEC as it is probably less correlated with H,
and all elements of the state vector will be assumed to be uncorrelated. To keep the number of terms
in each half of the cost function (Eqn (5.4) below) approximately the same, we calculate bending
angles on just 5 levels.

We start by assuming a true state vector t. This is then randomly perturbed by assuming that the
actual T , p∗ etc are Normally distributed around the true value with the standard deviations shown
in Table 5.1. Each such perturbed state defines a background b. Similarly, we forward model t using
Eqns (5.1)–(5.3) to generate αL1 and αL2. These are also randomly perturbed assuming Gaussian
distributions having standard deviations that are the given functions of the actual bending angles also
shown in Table 5.1. These make up the pseudo-observations y. Finally, we pass the set through a
Levenberg-Marquardt minimisation of the usual 1D–Var cost function (eg Healy and Eyre, 2000 [9])

J(x) = 1/2(x−b)T B−1(x−b)+1/2(y−H(x))T O−1(y−H(x)) (5.4)

to give the analysed state (or retrieval) a = arg(min J). Here B and O are the covariance matrices
constructed from the same errors that were used to construct b and y. Since we are assuming un-
correlated errors in the state vector elements, and observations, both matrices are diagonal.

We repeat the retrieval 10000 times using different pseudo-backgrounds and pseudo-observations,
all based on the same true state, the parameters of which are listed in Table 5.1. We compare the
statistics of a− t and b− t to assess the impact of assimilating the observations.
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Toy model parameters

Field True value Error

T 250 K 2 K
p∗ 1000 hPa 10 hPa
nmax

e 3.0×1011 m−3 1.5×1011 m−3

r0 RE+300 km 50 km
H 75 km 25 km
αn Eqn (5.2) 1% true
αi1 Eqn (5.3) 1% true
αi2 Eqn (5.3) 1% true
αLC Eqn (5.5) Eqn (5.6)

Table 5.1: Specification of true state and background and observational errors.

5.1 Control: retrieval based on ionospherically corrected bending angle LC

This is a simplified version of current operational NWP procedure. The ionospherically corrected
neutral bending angle signal is estimated by simple elimination of α1 and α2 to be

αLC =
αL1 f 2

L1−αL2 f 2
L2

f 2
L1− f 2

L2
(5.5)

The error on αLC, assuming the errors on αL1 and αL2 to be uncorrelated (which they are by design
in this model problem), is given by

σ
2
LC = σ

2
i1

(
f 2
L1

f 2
L1− f 2

L2

)2

+σ
2
i2

(
f 2
L2

f 2
L1− f 2

L2

)2

(5.6)

This expression implies that the minimum error on αLC is two or three times that on αL2 and αL1
(respectively). The errors on αLC are larger because it is the difference between two similarly sized
quantities. The hope is that by using the better (ie lower error, and much lower fractional error) L1
and L2 signals directly, we might obtain a better retrieval than at present. The forward model H in
Eqn (5.4) is given by H(x) = [αn]: there is clearly no sensitivity to nmax

e , r0 or H.

Fig 5.1 shows an example of the convergence of the state during the minimisation of the cost
function. In this case the analysed temperature is further from the truth than the background is. The
reverse is true for the surface pressure. There is obviously no change in nmax

e , r0 or H in this case.
The cost function at analysis is slightly smaller than it is at background.

Fig 5.2 shows histograms of b− t and a− t. They are both centred on 0: the first by design; the
second suggesting that linear theory (in which it would hold) is approximately true here. The analysed
T and p∗ distributions have a smaller spread than the background distributions — in other words, the
observations have tightened up the retrievals by adding extra information to the prior distribution.
This is borne out by the statistics. The dashed curves are Gaussian distributions with widths given by
(the square roots of the diagonal elements of) the background covariance matrix B and the analysis
covariance matrix A = (B−1 +KT O−1K)−1. (These numbers are printed on the plots.) Clearly the latter
are smaller than the former. A more quantitative comparison appears in Sec 5.5.
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Figure 5.1: Example of iterative convergence of T , p∗, nmax
e , r0, H and 2J/m in control

experiment.
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Figure 5.2: Histograms of b− t (blue) and a− t (red) for control experiment ensemble.
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5.2 Test 1: retrieval based on L1 and L2 bending angles

In this experiment we use both αL1 and αL2, which makes y twice as long as in the control. The
forward model is given by H(x) = [αn +αi1,αn +αi2], and there is sensitivity to all elements of x.

Fig 5.3 shows the convergence of the state during the minimisation of the cost function. The key
difference from the control experiment is of course the variation of nmax

e , r0 and H, on which both L1
and L2 depend. In this particular case the analysis brings all five background state variables nearer
to the truth. The cost function at analysis is much (700 times) smaller than it is initially.

Fig 5.4 shows histograms of a− t and b− t. The analysed T , p∗, nmax
e , r0 and H all show smaller

mean square deviations from the truth than their corresponding backgrounds.

We note that the 1D–Var retrieval has introduced a mean shift in the retrieved r0 of about -9 km.
This shows that non-linear terms in the forward model are having an impact.

Interestingly, the retrieved T and p∗ are significantly better (smaller variance) than they are in
the control experiment. This is a very tentative suggestion that we may get better retrievals of the
atmospheric parameters — the things in which we are really interested — by modelling L1 and L2
directly, rather than by modelling their ionospherically corrected combination. We suggest that this
is due to the smaller errors on αL1 and αL2 than on their linear combination αLC. This conclusion is,
however, strongly dependent on the rather arbitrary errors attached to the background parameters
and to L1 and L2.
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e , r0, H and 2J/m in first test

experiment.
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Figure 5.4: Histograms of b− t (blue) and a− t (red) for first test experiment ensemble.

24



ROM SAF Report 17 Culverwell and Healy: Direct simulation of L1 and L2

5.3 Test 2: retrieval based on L1 bending angle only

In this experiment we use just αL1, so y has the same length as in the control. The forward model
is given by H(x) = [αn + αi1], so there is sensitivity to all elements of y. This is the limiting case of
possible interest: the L2 signal is completely missing.

Fig 5.5 shows the convergence of the state during the minimisation of the cost function. Again, in
this particular case the analysis brings all five background state variables nearer to the truth. The
cost function at analysis is much (800 times) smaller than it is at background. Despite only having
half the number of observations of the first test, the retrieval is remarkably similar. This suggests that
a decent retrieval may just be possible using L1 alone. Closer scrutiny of the distributions of a− t and
b− t shown in Fig 5.6 show that in fact the variances in Test 2 are larger than those of Test 1, but
that, for T and p∗, they are still smaller than in the control experiment. And, as for Test1, a (similar)
bias has appeared in the analysed r0.
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Figure 5.5: Example of iterative convergence of T , p∗, nmax
e , r0, H and 2J/m in second test

experiment.
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Figure 5.6: Histograms of b− t (blue) and a− t (red) for second test experiment ensemble.
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5.4 Test 3: retrieval using L1 as a proxy for LC

Another way of coping with the loss of the L2 bending angle is to simply pretend that L1 is the
neutral bending angle, and to increase the errors in the 1D–Var retrieval system to account for the
necessarily large difference between the two at height. This is what we do in this experiment, in which
the observation vector y = αL1, and the forward model is given by H(x) = [αn]. There is therefore no
sensitivity to the ionospheric elements of the state vector x.

Since the errors on LC and L1 are uncorrelated in this experiment, we would expect the variance
of the error on αL1−αn to be given by

σ
2
LC−n = σ

2
L1 +σ

2
n (5.7)

In fact, because the neutral forward model cannot hope to model the ‘flattening’ of the L1 bending
angle with height, we find that these errors need to be inflated fivefold in order to get any kind of
sensible 1D–Var retrieval. Using an inflation factor of less than five gives rise to enormous cost
functions and very significant biases in the analysed model parameters; inflating by factors of greater
than five leads to more modest cost functions but hardly any change in the state variables from their
background values — in other words, it nullifies the effect of the observations altogether.

Fig 5.7 shows the convergence of the state during the minimisation of the cost function. The very
high initial cost function (note the different scale on the y-axis) is slightly reduced by the changes in T
and p∗. More interesting are the histograms of the analyses and backgrounds shown in Fig 5.8. The
retrieval has introduced a significant bias of 1.2 K into the temperature T and a less significant one of
1.5 hPa into p∗. Both evidently increase the neutral bending angle as calculated with Eqn (5.2). The
mean 2J/m (note the different scale on the x-axis to that in the other runs) is also about ten times
larger than expected. Both indicate (understandable) problems in retrieving L1 bending angles with a
neutral atmosphere forward model.
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Figure 5.7: Example of iterative convergence of T , p∗, nmax
e , r0, H and 2J/m in third test

experiment.
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Figure 5.8: Histograms of b− t (blue) and a− t (red) for third test experiment ensemble.
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5.5 Comparison

Table 5.2 lists, for all four experiments, ||a− t||2/||b− t||2, the reduction in the standard deviation of
the state variables arising from the addition of observational information to the prior state during the
retrieval procedure. It also lists the mean value of 2J/m for the analyses. (Recall that the expectation
value of this is unity for linear forwrd models.) It can be seen that Test 1, which has twice as many ob-
servations as the Control experiment, gives better retrievals according to this measure. This result is,
however, strongly dependent on the errors and background values, which are open to some question.
Less contentious, because the systems are identical apart from the number of observations, is the
conclusion that Test 2, which uses the L1 bending angles alone, is nearly as good as Test 1, which
uses both L1 and L2. Also suggestive is the result that Test 3, in which L1 serves a direct proxy for
LC, gives the least reduction in the state vector variance of all, as well as incurring very large cost
functions.

||a− t||2/||b− t||2, and 2J(an)/m, in model retrieval system

Experiment T p∗ nmax
e r0 H 2J/m

Cntl 0.695 0.928 1 1 1 0.99
Test 1 0.460 0.650 0.557 0.507* 0.737 2.08
Test 2 0.520 0.748 0.600 0.592* 0.781 3.65
Test 3 0.970* 0.991* 1 1 1 10.57

Table 5.2: ||a− t||2/||b− t||2, and 2J(an)/m, for state elements in model retrieval system.
*Subject to some bias in the analysis.

These simple idealised experiments suggest, very tentatively, that direct modelling of a single
Chapman layer ionosphere might give better retrievals than the ionospherically corrected linear com-
bination of L1 and L2 used presently, and that this result may still hold even if L2 is unavailable. It
certainly appears preferable to simply using L1 as a proxy for LC. Whether the same is true with real
RO data remains to be seen. It would require running a series of VAR trials with these changes in the
forward model. The impact on the surface pressure and temperature could then be assessed prop-
erly. This work is planned. A natural first step in this direction would be to examine whether observed
bending angles can be even approximately modelled by means of a spherically symmetric Chapman
layer ionosphere. This is the subject of the next Section.
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6 Fitting GRAS L1 – L2 data

Sec 5 has suggested that there may be advantages to modelling the L1 and L2 bending angles
separately, by means of a Chapman layer ionosphere. To test this hypothesis further, the L1 and
L2 occultations from the GRAS1 instrument on Metop-A2 for 5 consecutive days in June 2012 were
downloaded from the ROM SAF website (ROM SAF 2014, [14]) — around 3500 occultations in total.
For each profile, the neutrally corrected signal L1 – L2 was calculated, truncated below 30 km (to
focus on the ionospherically dominated bending angles), and fitted to a Chapman layer bending
angle profile thus:

αL1(a)−αL2(a) = k4( f−2
L1 − f−2

L2 )nmax
e

√
4er2

0a2

H(r0 +a)3 Z
(

r0−a
H

)
, (6.1)

as found by using Eqns (5.1) and (5.3). When it converges successfully, the (Levenberg-Marquardt)
fitting routine returns estimates of TEC, r0 and H. An example of a successful retrieval is shown in
Fig 6.1. Reasonable ionospheric parameters are returned from a close fit. An example of an unsuc-
cessful retrieval is shown in Fig 6.2. In the second case, L1 – L2 is positive, which, in this framework,
implies that Z(l) < 0. Moreover, |L1 – L2| is reducing with height, which puts it in the top third of the
Z(l) curve — well above the ionospheric peak height. This can be ruled out on physical grounds. The
reason for this and other L1 > L2 retrievals is under investigation. Horizontal gradients of electron
density, which violate the spherical symmetry approximation, have been suggested as one possibil-
ity, but the analysis of Sec 2.2 suggests this is unlikely to be sufficiently strong or common enough to
explain the abundance of such ‘anomalous’ profiles.

When these and other similarly unphysical least square fit retrievals (those with TEC < 0 or >
100 TECU, those with r0 or H < 0 or > 1000 km, or those whose sum of squared residuals exceeds 10
times the number of points being fitted) are ruled out, about 2000 ‘good’ profiles, out of the original set
of 3500, remain. When these are put on a 400 km resolution grid, which is about the same horizontal
resolution as a Radio Occultation measurement, the TEC map shown in Fig 6.3 is produced. Although
there is clearly a lot of noise in the retrievals, the distribution is roughly correct: peaking in the tropics
at around 25 TECU in the zonal mean, and arguably a little smaller in the southern hemisphere. An
independent analysis of the global TEC in the middle of this 5-day period is shown in Fig 6.4 (Bureau
of Meteorology, 2014 [3]). The two fields are in broad agreement, especially when the diurnal variation
of TEC is considered. For what it is worth, the retrieved Chapman layer peak height r0 and thickness
H peak strongly in the southern hemisphere — see Figs 6.5 and 6.6. There is some evidence that
the peak of the ionosphere lifts as the winter pole is approached (eg Zhang and Holt, 2007 [18]).

The results of this section suggest that, when L1 and L2 can be fitted to a single Chapman layer, the
resulting estimates of the ionospheric parameters are sensible. This lends a little confidence to the
method. They should not, however, be viewed as measurements of the ionosphere. Many different
model ionospheres could produce the given bending angles: this method simply retrieves the defining
characteristics of the Chapman layer ionosphere that would do so — when it can.

Interpolating or extrapolating L2 from L1 – L2 differences is the current operational procedure when
the L2 signal drops out. This analysis here suggests that a physically based interpolation method
based on Chapman layer bending angle profiles may be no worse than this. Where L1 – L2 cannot
be fitted by Eqn (6.1), the current method could be employed.

1Global Navigation Satellite System Receiver for Atmospheric Sounding (ie an RO receiver).
2EUMETSAT’s operational polar orbiting meteorological satellite, launched in 2006.
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Figure 6.1: Example of a successful and physically reasonable least squares fit of
Eqn (6.1) to neutrally corrected RO signal L1 – L2.
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Figure 6.2: Example of a successful but physically dubious least squares fit of Eqn (6.1)
to neutrally corrected RO signal L1 – L2.
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Figure 6.3: Global maps of retrieved Chapman layer total electron content TEC from 2000
‘good’ least squares fits to the GRAS L1 – L2 bending angles between 11th and 15th June
2012.

Figure 6.4: TEC analysis for 12Z 13th June 2012 produced by IPS ([3]). This is derived
from IRI model background driven by ionosonde data, and GNSS phase delay data as-
suming a delta-function ionosphere.
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Figure 6.5: Global maps of retrieved Chapman layer peak height r0 from 2000 ‘good’ least
squares fits to the GRAS L1 – L2 bending angles between 11th and 15th June 2012.
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Figure 6.6: Global maps of retrieved Chapman layer width H from 2000 ‘good’ least
squares fits to the GRAS L1 – L2 bending angles between 11th and 15th June 2012.

33



Culverwell and Healy: Direct simulation of L1 and L2 ROM SAF Report 17

7 Summary, conclusions and future work

This report has discussed several issues in connection with the modelling of the single frequency
L1 and L2 bending angles by means of a simple model ionosphere. This has been motivated by the
need to account for the not infrequent absence of one of the signals (usually L2, especially in the
lower part of the profile). The current operational method, which consists of removing the ionospheric
contribution to the bending by taking a linear combination of the L1 and L2 signals, cannot be applied
in such situations. Using L1 and L2 separately would still be possible. The work of this report prepares
the ground for a proper study of the value of doing so. Its key findings are as follows.

• Background theory, with and without a uniform horizontal refractivity gradient

– The basic theory for the frequency-dependent bending angles incurred by a radio wave
when passing through a spherically symmetric ionosphere has been reviewed. The overall
bending is proportional to the total electron content, TEC: the vertically integrated electron
density

∫
ne(r)dr.

– It has been pointed out that, for impact parameters beneath the ionosphere, the ray is
always bent towards the Earth.

– The impact of a uniform horizontal refractivity gradient has been examined by evaluating
the first order perturbation to the spherically symmetric bending angles. It has been shown
that large horizontal gradients can reverse the symmetrical ionosphere result and generate
negative bending angles — that is, the ray can be deflected away from the Earth. According
to this model, however, sufficiently large electron density gradients are unlikely to occur
often enough to explain the observed abundance of these ‘anomalous’ bending angles.

– The sensititivity of the bending angles to the assumed ionospheric electron density profile
has been briefly examined. Below about 100 km there is little dependence on the shape
of the electron density profile, save for an overall proportionality to the TEC. But if the
lower side of the ionosphere encroaches on the upper end of the range of impact heights
being studied it can strongly affect the bending angles. Generally, however, the single fre-
quency bending angles ‘flatten off’ above about 50 km. This should be contrasted with the
behaviour of the ‘ionospherically corrected’ bending angles, which are determined by the
refractivity of the neutral atmosphere, and which continue to decay roughly exponentially
with height beyond even 100 km.

• The bending produced by a Chapman layer ionosphere

– It has been shown that the bending angle induced by a model ionosphere which comprises
a single, spherically symmetric ionosphere having a ’Chapman layer’ electron density pro-
file, Eqn (3.9), can be written (Eqn (4.2)) in terms of a function Z which depends only on
the normalised relative distance between the impact height and the electron density peak.

– Various methods of calculating Z have been examined (App A). The asymptotic behaviour
of Z far above and far below the electron density peak have been described. A simple Padé
approximation, which is correct to within 2.2% for all impact heights, has been derived.
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• Applications to NWP

– Some idealised 1D–Var retrievals in a simple system comprising a dry, isothermal atmo-
sphere with a Chapman layer ionosphere have been carried out. This model system has
the virtue over real data that the ‘true’ state vector is known, which allows the reduction in
its variance resulting from the retrieval procedure to be quantified.

– The current operational procedure of using an ionospherically corrected linear combination
of the two signals, LC, is compared to using both L1 and L2, using L1 alone, and to using
L1 as a proxy for LC. Preliminary results tentatively suggest that making retrievals with
the ‘raw’ signals L1 and L2 could deliver analysed temperatures and surface pressures
that are clustered more tightly about the true values than those coming from the current
ionospherically corrected signal. This appears to be true even if L1 alone is used. Either
is much better than using L1 as a proxy for LC, which is currently the only option if one of
the signals were permanently disabled.

– 3500 consecutive L1 and L2 signals from the GRAS instrument on Metop-A had their
differences, which are proportional to the ionospheric component of the bending, fitted to
the Chapman layer Z function. The majority of the L2–L1 bending angle differences could
be fitted satisfactorily, and the resulting ionospheric parameters (TEC, peak height and
thickness) appear plausible. This is not to suggest that RO bending angles could be used
to observe the ionosphere. Rather, it simply states that the ‘effective’ Chapman layer —
the one that could generate the observed bending angles — is not wildly wrong.

– A significant minority (∼ 45%), however, of the L2–L1 bending angle differences could not
be easily fitted to the Z function. Some of these (≈ 13%) were because L2–L1 was in fact
negative at height (≥ 50 km). This is not possible within the framework presented here. In-
vestigations continue into the cause of these ‘anomalous’ occultations. Horizontal electron
density (and therefore refractivity) gradients is one possibility, but the earlier work of this
report casts some doubt upon this. The concern is that the usual ionospheric correction,
which renders these occulations nominally valid, is in fact masking a problem which should
lead to the profile being excluded from the assimilation system. The matter needs to be
resolved before undertaking serious assimilation trials.

• Future work

The work of this report could be extended in the following ways.

– It should be possible to account for the effect of the refractive index not being unity at the
LEO satellite, when estimating the bending angles from the Doppler shift values. For a
stationary transmitter and a receiver in a circular orbit, this can be shown to introduce a
bias in the bending angles αi of the form (eg Schreiner et al, 1999 [15]1):

∆αi ≈
a√

r2
LEO−a2

k4

f 2
i

ne(rLEO), (7.1)

where ne(rLEO), the electron density at the LEO satellite, could be estimated as part of
the retrieval. The bending angle forward model could be modified to include this term.
This correction is more important in single frequency retrievals, because the f−2 bias in
Eqn (7.1) would cancel out if the usual ionospheric correction were applied to the L1 and
L2 bending angles.

1Schreiner et al’s expression (their Eqn (A6)) is twice as large as Eqn (7.1) because it applies to ‘calibrated’ bending angles
— those between the LEO and its mirror image on the other side of the tangent point — rather than the GNSS-LEO
bending angles considered here.
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– It should also be possible to improve the accuracy of the forward model by removing the
ionospheric bending from above the LEO satellite. For a Chapman layer, Figs A.2 and A.5
suggest that a correction based on a few terms of the Eqns (A.12) and (A.26) respectively
should be adequate. This correction is likely to be more important for any reprocessing of
CHAMP measurements, rather than COSMIC or GRAS, because the orbit has a signifi-
cantly lower altitude (around 420 km, compared to around 800 km).

– More extensive investigations on the possible direct use of the L1 and/or L2 bending angles
should be undertaken with real RO data. These studies could include O-B diagnoses,
assimilation trials and comparisons with bending angles derived from ray-tracing codes.

– The puzzling abundance of ‘anomalous’ occultations — those in which the L1 bending an-
gle exceeds the L2 bending angle — needs to be understood. Again, detailed comparison
with ray-tracing codes could help here.

– Although it has been stressed that the simple ionospheric model described here is not
intended to diagnose ionospheric parameters (even ‘effective’ ones), the temptation to
examine, for example, the retrieved TECs resulting from a month-long assimilation trial,
would be difficult to resist.

– Finally, the impact of other analytical electron density profiles (eg Fonda et al 2005, [8]) on
the forward model accuracy could be investigated.
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A Appendix A: The bending angles induced by a Chapman layer
ionosphere

Recall that we are trying to calculate the bending angle (Eqn (2.1))

α(a) =−2a
∫

∞

a

dlogn/dx√
x2−a2

dx (A.1)

where (Eqn (2.3))
logn≈ n−1 =−k4ne/ f 2 (A.2)

and (Eqn (3.9))

ne(r) =
TEC√
2πeH

exp
(

1
2
(1−u− e−u)

)
, (A.3)

in which u = (r− r0)/H.

A.1 General theory

At typical ionospheric electron densities ne of around 1011 m−3 at RO frequencies f ∼ 109 Hz, Eqn (A.2)
implies n− 1 ∼ 10−6. We therefore replace x = nr by r in the integrand of Eqn (A.1) to obtain, after
substituting Eqn (A.2),

α(a, f ) = −2a
∫

∞

a

dlogn/dr√
r2−a2

dr (A.4)

= 2a
k4

f 2

∫
∞

a

dne/dr√
r2−a2

dr (A.5)

≈ 2a
k4

f 2
2r0

(r0 +a)3/2

∫
∞

a

dne/dr√
r−a

dr (A.6)

where we approximately factorise
√

r2−a2 as
√

r−a(r0 + a)3/2/2r0 in the last step to ensure that
Eqns (A.5) and (A.6) give the same result for an infinitely thin model ionosphere, ne(r) = TECδ (r−r0),
which is an appropriate limit for this problem. Ionospheric bending angles calculated this way differ
from (exceed) those calculated according to the more usual factorisation

√
r2−a2 ≈

√
2a(r−a) (eg

Kursinski et al, 2000 [10]) by no more than 1%. Neither factorisation is ‘correct’, and this freedom of
choice therefore places an irreducible uncertainty on any estimate of Eqn (A.4) whose integrand is
simplified in this way. It follows that it is futile to calculate Eqn (A.1) more accurately than to within a
per cent or so.

Substituting Eqn (A.3) into Eqn (A.6) gives, eventually,

αi(a) = α(a, fi) =
k4

f 2
i

nmax
e

√
4er2

0a2

H(r0 +a)3 Z
(

r0−a
H

)
(A.7)

where the dimensionless, order 1, function Z is defined by

Z(l) =
∫

∞

−l

(e−3u/2− e−u/2)exp(−1
2 e−u)

√
u+ l

du. (A.8)
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The function Z describes most of the variation of bending angle with height, since the other factors
in Eqn (A.7) only vary slowly over the range of impact parameters a of interest. Crucially, Z depends
only on the parameter l = (r0−a)/H, the distance from the peak of the Chapman layer expressed in
widths of the layer. For practical RO applications, 2 . l . 10.

Eqn (A.8), evaluated numerically at high precision, is plotted in grey in Fig A.1. Beneath the peak
of the Chapman layer, at l = 0, the bending is positive and increasing with impact height; well above
the peak it is negative and decreases (in magnitude) with height.

A.2 Solution for l = (r0−a)/H� 0

By expanding the super-exponential in Eqn (A.8) as a series of exponentials we find

Z(l) =
∞

∑
r=0

(−1/2)r

r!

∫
∞

−l

e−(r+3/2)u− e−(r+1/2)u
√

u+ l
du (A.9)

= 2
∞

∑
r=0

(−1/2)r

r!

∫
∞

0

(
e(r+3/2)le−(r+3/2)v2− e(r+1/2)le−(r+1/2)v2

)
dv (where v2 = u+ l) (A.10)

=
√

2πel′
∞

∑
r=0

(−el′)r

r!

{
2el′√

r +3/2
− 1√

r +1/2

}
(A.11)

= −2
√

2πel′
∞

∑
r=0

(−el′)r

r!

√
r +1/2 (A.12)

after a little algebra, and defining l′ = l − log2. (The penultimate step uses the standard integral∫
∞

0 exp(−x2)dx =
√

π/2.) Eqn (A.12) is a convergent series for all l′ and therefore gives the full theoret-
ical solution. In practice, however, for large l′, the need to store the rapidly increasing and alternating
terms at sufficient precision to calculate the small net total sets a limit to its utility. For example, with
double precision arithmetic, the largest value of l = (r0−a)/H = l′+ log2 for which direct summation
of Eqn (A.12) is possible is about 4.0. For larger values of l the series diverges badly. Euler acceler-
ation of the series — the transformation el′ 7→ el′/(1+ el′) followed by re-expression of the coefficents
in the series (eg Mathews and Walker, 1970 [11]) — only extends this region of validity of l to about
4.6 (and at considerable calculational cost)1. For a thin ionospheric D-layer (H ∼ 10 km, r0−RE ∼
100 km), l could be as large as 10, and we are therefore forced to seek another solution in the large
l regime.

These convergence characteristics are shown in Fig A.2, which plots the fractional error in Eqn (A.12)
as a function of l and the number of terms in the series. Clearly an excellent solution for negative l is
obtained by keeping just a few terms. Equally clearly, a very poor approximation is made for l > 3, no
matter how many terms are kept in the partial sum.

A.3 Solution for l = (r0−a)/H� 0

In view of the numerical difficulties in evaluating Eqn (A.12) beyond l = 4.0, it is worth studying the
behaviour of Z(l) for large l directly.

Substituting s2 = (1/2)exp(−u) in the integrand of Eqn (A.8), and then expanding the radical, shows

1With single precision arithmetic, the ‘direct’ and ‘Euler’ maximum computable ls fall to 3.0 and 3.1 respectively.
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Figure A.1: Estimates of Z(l): high precision numerical evaluation (Eqn (A.8)) — thick
grey line; small l′ approximation (Eqn (A.12)), 1 term — dashed blue line, 100 terms —
solid blue line; large l′ approximation (Eqn (A.18)), 1 term — dashed purple line, 8 terms of
rearranged series (Eqn (A.22)) — solid purple line; all l′ approximation (Eqn (A.26)), 100
term — orange square, 100 term error — orange line; Padé approximation (Eqn (A.27)),
green disc, error — green line. Fractional error scale on top axis.
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Figure A.2: Fractional error in Eqn (A.12) as a function of l = (r0−a)/H and the number
of terms in the partial sum. 1% contour in bold.

that

Z(l) = 2

√
2
l′

∫ √g/2

0

(2s2−1)e−s2

(1−2logs/l′)1/2 ds (A.13)

= 2

√
2

πl′
∞

∑
r=0

Γ(r +1/2)
Γ(r +1)

(
2/l′
)r
∫ √g/2

0
logr s (2s2−1) e−s2

ds (A.14)

= 2

√
2

πl′
∞

∑
r=0

Γ(r +1/2)
Γ(r +1)

(
2/l′
)r

{[
−se−s2

logr s
]√g/2

0
+ r

∫ √g/2

0
logr−1 s e−s2

ds

}
(A.15)

∼ 2

√
2

πl′
∞

∑
r=0

Γ(r +1/2)
Γ(r +1)

(
2/l′
)r r

∫
∞

0
logr−1 s e−s2

ds as g→ ∞ (A.16)

= 2

√
2

πl′
∞

∑
r=1

Γ(r +1/2)
Γ(r +1)

(
2/l′
)r r 2−r

Γ
(r−1)(1/2) (as the r = 0 term equals zero) (A.17)

= 2

√
2

πl′3
∞

∑
r=0

Γ(r +3/2)
Γ(r +1)

Γ
(r)(1/2)(l′)−r (letting r 7→ r +1) (A.18)

=

√
2π

l′3

{
1−3(c+2log2)/2l′+15

(
(c+2log2)2 +π

2/2
)
/8l′2 + . . .

}
(A.19)

≈
√

2π

l′3

{
1.00−2.95/l′+16.48/l′2− . . .

}
(A.20)

Here, Γ(x) =
∫

∞

0 tx−1e−tdt is the usual Gamma function, and Γ(r)(1/2) is its rth derivative at x = 1/2. c≈
0.57721 56649 is the Euler-Mascheroni constant. See App B for details on the evaluation of these
coefficients.
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Eqn (A.18) shows that Z ∼
√

2π/l′3 ∼
√

2π/l3 as l′→ ∞. Substitution into Eqn (A.7) shows that the
bending angle in this limit is therefore

αi(a) = 2a
k4

f 2
i

nmax
e

√
2πeH

r0

(r2
0−a2)3/2 . (A.21)

This is of course the same as Eqn (3.2): the bending from a delta function ionosphere.

We note that Eqn (A.18) can also be obtained by formally integrating Eqn (A.8) by parts and
discarding the ‘integrated’ part. The large l′ assumption made in Eqn (A.16) is therefore equivalent to
assuming ne(a) is so small that this procedure is legitimate. See the discussion around Eqn (2.5).

The first few Γ(r)(1/2), and their asymptotic form for large r, are tabulated in Table B.1 in App B.
It follows from the latter (namely, Γ(r)(1/2) ∼ (−1)r2r+1r! as r→ ∞) that, not unusually, the asymp-
totic expansion Eqn (A.18) is divergent. This is clear from Fig A.3, which plots the fractional error in
Eqn (A.18) as a function of l = l′+ log2 and the number of terms of the series which are retained.
For a given number of terms in the partial sum, the accuracy increases (eventually) as l′ increases,
but, for a given value of l′, there is an optimum accuracy obtained by summing a certain number of
terms. Including more terms in the partial sum worsens the accuracy. It is clear in this case that 1%
accuracy is impossible for l < 15, and that even 10% accuracy is impossible for l < 10.

The one term solution, Z(l) =
√

2π/l′3 — which, according to Fig A.3, is as good as it gets for
2 < l < 10 — is included in Fig A.1. Clearly it is a poor approximation. In fact, one needs to be at least
15 scale heights below the Chapman layer peak before the delta function solution, ∝ l′−3/2, is within
even 10% of the true value.

Convergence can be improved by applying the Euler transformation ([11]) to the series in Eqn (A.18).
This gives

Z(l) = 2

√
2

πl′3
∞

∑
r=0

Γ(r +3/2)
Γ(r +1)

Γ
(r)(1/2)(l′)−r

= 2

√
2

πl′3
∞

∑
r=0

2−(r+1)
r

∑
s=0

(
r
s

)
Γ(s+3/2)
Γ(s+1)

Γ
(s)(1/2)(l′)−s (A.22)

=

√
2π

l′3

{
(1/2)+(1/4)

[
1−3(c+2log2)/2l′

]
+

(1/8)
[
1−3(c+2log2)/l′+15

(
(c+2log2)2 +π

2/2
)
/8l′2

]
+ . . .

}
(A.23)

≈
√

2π

l′3

{
0.50+0.25(1−2.95/l′)+0.125(1−5.90/l′+16.48/l′2)+ . . .

}
. (A.24)

The convergence characteristics of Eqn (A.22), shown in Fig A.4, indicate that a 1% accurate solution
for l > 6 is possible provided that at least 8 terms are included in the transformed series. It may
therefore have some utility in the high l regime. Note, however, that the Euler acceleration has done
nothing to prevent the ultimate divergence, and that the solution is still only valid for l′ > 0. As we
shall see in Sec A.4, there is a better solution which is valid for all l.

The 8 term partial sum in Eqn (A.22) is shown in Fig A.1. (The error is in fact negative.)

A.4 Theoretical solution for all l = (r0−a)/H

The numerical problems of Eqn (A.12) can be overcome by considering a truncated Chapman layer,
in which ne(r) is given by Eqn (A.3) for u > u∗, and is zero below. We take u∗ = −3.5 as this is large
enough (the electron density is less than 10−6 of its peak value) to make a negligible difference (less
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Figure A.3: Fractional error in Eqn (A.18) as a function of l = (r0−a)/H and the number
of terms in the partial sum. 1% contour in bold.
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than 2 parts in 106)2 to the large l′ bending angles — the ones that are affected by the truncation —
but small enough to prevent wildly oscillating terms appearing in Eqn (A.12), as we shall see. This
value of u∗ is also large enough to ensure that the TEC is largely unaffected by the truncation.

For a Chapman layer truncated at u = u∗ the theory of Section A.1 shows that

Z(l) =
∫

∞

−l∗

(e−3u/2− e−u/2)exp(−1
2 e−u)

√
u+ l

du+2S(l− l∗)
exp(−(u∗+ e−u∗)/2)√

u∗+ l
, (A.25)

where l∗ = min(−u∗, l). Hence, if l < −u∗, l = l∗ and Eqn (A.25) matches Eqn (A.8). S is again the
Heaviside step function: zero when its argument is less than or equal to zero, and unity otherwise.
(It arises from differentiating the discontinuity in ne(r) at u = u∗ and integrating the resulting delta-
function. We sidestep the singularity at l =−u∗ by insisting that S(0) = 0.)

Expanding the super-exponential as in Sec A.2, we find

Z(l) =
√

2πel′∗
∞

∑
r=0

(−el′∗)r

r!

{
2el′∗√
r +3/2

erfcx
(√

(r +3/2)(l− l∗)
)
− 1√

r +1/2
erfcx

(√
(r +1/2)(l− l∗)

)}

+ 2S(l− l∗)
exp(−(u∗+ e−u∗)/2)√

u∗+ l

= −2
√

2πel′∗
∞

∑
r=0

(−el′∗)r

r!

√
r +1/2 erfcx

(√
(r +1/2)(l− l∗)

)
+2S(l− l∗)

exp(−(u∗+ e−u∗)/2)√
u∗+ l

(A.26)

where l′∗ = l∗− log2≤ l− log2 = l′ and the function erfcx (x) = exp(x2) erfc (x) decreases slowly from
1 to 0 as x goes from 0 to infinity.

Some programming languages, such as IDL, provide erfcx (x) as an intrinsic function, which makes
its evaluation quick and accurate. If such a verified intrinsic is not available, potential users of Eqn (A.26)
should be aware that it needs a reasonably accurate evaluation of erfcx (x). For instance, the 50
term partial sum using the common approximation3 erfcx (x) = 0.3480242t−0.0958798t2 +0.7478556t3,
where t = (1+0.47047x)−1, loses the 1% accuracy shown in Fig A.5 beyond l = 8.

Notice that if l ≤ −u∗ — that is, above the truncation of the Chapman Layer — then l′∗ = l′, the
erfcx’s equal unity, and Eqn (A.26) matches Eqn (A.12). But for l >−u∗, below the truncated Chapman
Layer, Eqn (A.26) is an expansion in terms of the ‘limited’ parameter l′∗, which, since −u∗ < 4.0, can
be summed numerically (at double precision), as discussed in Sec A.2.

Because u∗ =−3.5, the ‘shoulder’ term in Eqn (A.26), namely 2S(l− l∗)exp(−(u∗+e−u∗)/2)/
√

u∗+ l,
is negligible, and can be safely dropped in practice.

The convergence characteristics of Eqn (A.26) are shown in Fig A.5. It is clear that limiting l′ to
l′∗ has curbed the wild behaviour of Eqn (A.12) for l > 3, and that a 1% accurate solution is possible
even for l = 10 by retaining 50 terms in the partial sum. In fact, 60 terms give a solution accurate to
within 1 part in 106.

The 100 term solution is included in Fig A.1, and clearly gives an accurate, if computationally
expensive, solution to the problem.

2Because (cf Eqn (A.13))
∫√g/2

s∗ (2s2 − 1)e−s2
(1− 2logs/l′)−1/2 ds /

∫√g/2
0 (2s2 − 1)e−s2

(1− 2logs/l′)−1/2 ds ≈ erfc (s∗) +
(2l′/π)s∗ exp(−s2

∗), as can be seen by expanding the square root in the integrand and keeping only the terms in l′0

and l′−1. If u∗ =−3.5 then s∗ =
√

exp(−u∗)/2≈ 4.1, which means that erfc (s∗)∼ 10−8 and s∗ exp(−s2
∗)∼ 10−7, so that if

l′ ≤ 10, the bending angle coming from the ‘tail’ of the integral beyond s = s∗ (ie coming from u < u∗ in Eqn (A.8)) is less
than about 2×10−6 of the total.

3As (effectively) used in ROPP (http://www.romsaf.org/software.php).
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Figure A.5: Fractional error in Eqn (A.26) as a function of l = (r0−a)/H and the number
of terms in the partial sum. 1% contour in bold.

A.5 Practical solution for all l = (r0−a)/H

Eqn (A.26) may have some theoretical value and interest, but in practice a less accurate but quicker
and simpler solution would suffice, bearing in mind the remarks in Sec A.1 about the irreducible
uncertainty in the factorisation of (r2− a2)−1/2 in Eqn (A.5). The following Padé approximation in a
transformed variable (θ ) is much quicker to evaluate than direct numerical integration and is accurate
to within 2.2% for all l4:

Z(l)≈ Z̃(θ) =
√

2πθ
p0 + p1θ + p2θ 2 + p3θ 3

q0 +q1θ +q2θ 2 +q3θ 3 +q4θ 4 +q5θ 5 (A.27)

where θ(l′) = sinh−1(el′) = log
(

el′ +
√

1+ e2l′
)

and the coefficients p0 . . . q5 are listed in Table A.1.

The ‘bridging function’5 θ(l′) is proportional to el′ for l′ � 1 and to l′+ log2 = l as l′ → ∞, which,
together with the conditions p0 =−

√
2 and p3 = q5, encapsulate the correct asymptotic behaviours of

Z(l) as given by Eqns (A.12) and (A.18). This lends confidence to the integrity to the solution. The
other coefficients are obtained by a least squares fit to the numerically integrated ‘exact’ solution.
The real zeros of the denominator of Eqn (A.27) occur at negative values of θ and are therefore
outside the domain of interest here. Eqn (A.27) is therefore well behaved numerically. It is also easy
to differentiate, which is helpful when writing tangent linear and adjoint codes.

Eqn (A.27) and its fractional errors are plotted in Fig A.1. The largest error in the region not shown
is 1.8% at l ≈ 20.

4Except in the immediate vicinity of the zero of Z(l) at l ≈ 0.8051, where the fractional errors naturally get very large.
5Simpler bridging functions, like log(1+ l′), did not deliver the same accuracy for the same number of tunable parameters.
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Padé coefficients

p0 -1.41421360 (=−
√

2)
p1 2.32540970
p2 -1.11628850
p3 0.23605387
q0 1.00000000 (= 1)
q1 0.15210651
q2 -0.76649105
q3 1.26080520
q4 -0.84687066
q5 0.23605387 (= p3)

Table A.1: Padé coefficients in Eqn (A.27)

A.6 Summary

The bending angle incurred by a ray passing through a spherically symmetric single Chapman layer
model ionosphere has been calculated. Eqn (A.7) expresses it in terms of the function Z(l), where
l = (r0− a)/H is the distance of the impact parameter a from the Chapman layer peak height r0,
expressed in widths H of the Chapman layer.

Various solutions for Z(l) have been found:

• Eqn (A.12), which is theoretically valid for all values of l, and very accurate for small l, but which
suffers insurmountable numerical problems when l is greater than about 4.0;

• Eqn (A.18), which is asymptotically valid as l→∞ but of little use for the more modest values of
l which occur in the RO context;

• Eqn (A.22), which is a rearrangement of Eqn (A.18) that can be more accurate for practical
values of l, but which is still divergent and only asymptotically valid as l→ ∞;

• Eqn (A.26), which is an accurate (10−4%) solution for a (very weakly) truncated Chapman layer,
and which is calculable for all values of l;

• Eqn (A.27), which is a less accurate but simpler and quicker Padé approximation to Z(l), which
is accurate to within 2.2% for all l.

The following leading order asymptotic approximations have been derived:

Z(l)∼


−
√

2πel as l→−∞√
2π/l3 as l→ ∞.

(A.28)

Z(l), and various approximations to it, are plotted in Fig A.1.
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B Appendix B: Numerical coefficients in Chapman layer solution

B.1 Derivatives of the gamma function

The solution described in App A.3 requires the rth derivative of the gamma function at argument 1/2,
Γ(r)(1/2).

B.1.1 General r

The definition
Γ(a) =

∫
∞

0
ta−1e−t dt for a > 0 (B.1)

implies

Γ
(r)(1/2) =

∫
∞

0
logr t t−1/2e−t dt. (B.2)

Calculation of Γ(r)(1/2) is effected by means of the digamma or ψ function, defined as

ψ(x) = Γ
′(x)/Γ(x) (B.3)

= −

{
c+ x−1 +

∞

∑
r=1

[
(r + x)−1− r−1]} , (B.4)

where c≈ 0.57721 56649 is the Euler-Mascheroni constant (Sec 6.3, Abromowitz and Stegun, 1965
[1]).

Eqn (B.4) implies
ψ(1/2) =−(c+2log2) (B.5)

and
ψ

(r)(1/2) = (−1)r+1r! (2r+1−1)ζ (r +1) for r > 0 (B.6)

where ζ (r) = ∑
∞
s=1 s−r is the Riemann zeta function.

Hence, by repeatedly applying Γ′(x) = Γ(x)ψ(x), we find (all functions evaluated at argument 1/2):

Γ
′ = Γψ (B.7)

=⇒ Γ
′′ = Γ(ψ2 +ψ

′) (B.8)
=⇒ Γ

′′′ = Γ(ψ3 +3ψψ
′+ψ

′′) (B.9)
=⇒ Γ

(4) = Γ(ψ4 +3ψ
′2 +6ψ

2
ψ
′+4ψψ

′′+ψ
′′′) (B.10)

=⇒ Γ
(5) = Γ(ψ5 +10ψ

3
ψ
′+15ψψ

′2 +10ψ
2
ψ
′′+

10ψ
′
ψ
′′+5ψψ

′′′+ψ
′′′′) (B.11)

=⇒ Γ
(6) = Γ(ψ6 +15ψ

′(ψ ′2 +3ψ
′
ψ

2 +ψ
4)+10ψ

′′(ψ ′′+6ψψ
′+2ψ

3)+
15ψ

′′′(ψ ′+ψ
2)+6ψψ

′′′′+ψ
′′′′′) (B.12)

and so on. c and the ζ (r) are tabulated (eg Table 23.3 Abromowitz and Stegun, 1965 [1]), which allow
Eqns (B.5)–(B.12) to generate the values of Γ(r)(1/2) shown in Table B.1. Exact expressions for the
first few values can also be obtained by appealing to the connection to the moments of the Chapman
distribution, as discussed in Sec B.2. Later values (larger r) are easily calculated by direct numerical
integration of Eqn (B.13) below.

47



Culverwell and Healy: Direct simulation of L1 and L2 ROM SAF Report 17

B.1.2 Asymptotic limits as r→ ∞

Substituting t = e−u in Eqn (B.2) gives

Γ
(r)(1/2) = (−1)r

∫
∞

−∞

ure−u/2 exp(−e−u)du (B.13)

= (−1)rrr+1
∫

∞

−∞

exp [r(logv− v/2)]exp(−e−rv)dv. (B.14)

after writing u = vr.

As r increases, exp(−e−rv) becomes increasingly close to unity for v > 0 and increasingly close to
zero for v < 0. We therefore approximate it by S(v), the step function of v, in Eqn (B.14) to obtain

Γ
(r)(1/2) ≈ (−1)rrr+1

∫
∞

0
exp [r(logv− v/2)] dv as r→ ∞

= (−1)r2r+1r!. (B.15)

Further terms in the large r approximation to Γ(r)(1/2) can be found by expanding exp(−e−rv) in
Eqn (B.14) and integrating term-by-term. The next one is (−2/3)r+1r!.

The first few Γ(r)(1/2) are shown in Table B.1. Note the very rapid increase of |Γ(r)(1/2)| with r.

Chapman layer solution coefficients

r Γ(r)(1/2) Γ(r)(1/2) −
(−1)r2r+1r!

0 1.7724539 -0.22754615

1 -3.4802309 0.51976909

2 15.580177 -0.41982256

3 -94.768602 1.2313977

4 765.09180 -2.9082043

5 -7669.5235 10.476510

6 92118.681 -41.319287

→ ∞ (−1)r2r+1r! (−2/3)r+1r!

Table B.1: Chapman layer solution coefficients.
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B.2 Moments of the Chapman distribution

For the record, we note a connection between the derivatives of the Γ function at argument 1/2, and
the moments of the Chapman distribution,

Jr =
∫

∞

−∞

ur exp[(1−u− e−u)/2]du. (B.16)

By substituting t = e−u/2 in Eqn (B.2), we find

Γ
(r)(1/2) =

(−1)r
√

2e

r

∑
s=0

(
r
s

)
(log2)r−sJs (B.17)

=
(−1)r
√

2e
(log2+ ↑)r J0, (B.18)

where we define ↑ Jk to be Jk+1 in the last rather formal expression.

Reciprocally,

Jr = (−1)r
√

2e
r

∑
s=0

(
r
s

)
(log2)r−s

Γ
(s)(1/2) (B.19)

= (−1)r
√

2e
(
log2+ ′)r

Γ
(0)(1/2), (B.20)

where we define ′ Γ(k)(1/2) to be Γ(k+1)(1/2) in the last equally formal expression.

This means that the Jr diverge for large r, as do the Γ(r)(1/2). In fact, it follows from Eqns (B.20)
and (B.15) that

Jr ≈
√

e 2r+1 r! as r→ ∞. (B.21)

The first few Jr, and their asymptotic form for large r, are listed in Table B.2.

Moments of the Chapman distribution

r Jr (theoretical) Jr (numerical) Jr/
√

e2r+1r!

0
√

2πe 4.1327314 1.2533141

1
√

2πe(c+ log2) 5.2500684 0.7960819

2
√

2πe
(
(c+ log2)2 +π2/2

)
27.063704 1.0259354

3
√

2πe
(
14ζ3 +3π2(c+ log2)/2+(c+ log2)3

)
155.74572 0.9840058

4
√

2πe
(
7π4/4+56ζ3(c+ log2)+3π2(c+ log2)2 +(c+ log2)4

)
1266.1382 0.9999371

→ ∞
√

e2r+1r! 1

Table B.2: Chapman layer moments, Eqn (B.16). c ≈ 0.57721 56649 is the Euler-
Mascheroni constant and ζ3 ≈ 1.20205 69032 is the Riemann zeta function at argument
3. Also making a hidden appearance are ζ2 = π2/6 and ζ4 = π4/90.
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C Appendix C: Reformulation of the calculation of Z(l′)

We present a reformulation of the calculation of the Z(l′) function described in App A. This has the
advantage that the whole problem can be reduced to the calculation of a definite integral whose
asymptotic expansions for large and small l′ can be calculated straightforwardly.

C.1 General theory

Recall that we are interested in calculating the function Z, defined in Eqn (A.13) as

Z(l′) = 2

√
2
l′

∫ √g/2

0

(2s2−1)e−s2

(1−2logs/l′)1/2 ds, (C.1)

where l′ = log(g/2) = (r− r0)/H− log2.

Routine manipulations show that

Z = 4
√

2
d

dl′

∫ √g/2

0
(2s2−1)e−s2

(l′−2logs)1/2 ds (C.2)

= 4
√

2
d

dl′

{[
−se−s2

(l′−2logs)1/2
]√g/2

0
−
∫ √g/2

0
e−s2

(l′−2logs)−1/2 ds

}
(integrating by parts)

= −2
√

2 x
d
dx

{√
x
∫ 1

0
e−xtt−1/2 log(1/t)−1/2 dt

}
, using s2 = xt where x = g/2. (C.3)

Now, defining

J(x,c) =
∫ 1

0
e−xtt−1/2 log(c/t)1/2 dt (C.4)

= c1/2
∫ 1/c

0
e−xcss−1/2 log(1/s)1/2 ds (where s = t/c), (C.5)

we find
∂J(x,c)

∂c

∣∣∣∣
c=1

= (1/2)
∫ 1

0
e−xtt−1/2 log(1/t)−1/2 dt (C.6)

and also
∂J(x,c)

∂c

∣∣∣∣
c=1

= (1/2)
∫ 1

0
e−xtt−1/2 log(1/t)1/2 dt− x

∫ 1

0
e−xtt1/2 log(1/t)1/2 dt (C.7)

by respectively differentiating Eqns (C.4) and (C.5) with respect to c and then setting c = 1.

Hence, by equating Eqns (C.6) and (C.7), we find∫ 1

0
e−xtt−1/2 log(1/t)−1/2 dt = I +2x

dI
dx

= 2
√

x
d
dx

(√
xI
)

(C.8)

where

I(x) =
∫ 1

0
e−xtt−1/2 log(1/t)1/2 dt. (C.9)
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Putting Eqn (C.8) into Eqn (C.3) gives

Z = −4
√

2 x
d
dx

{
x

d
dx

(√
xI(x)

)}
(C.10)

= −4
√

2x
{

x2I′′+2xI′+(1/4)I
}

where ′ denotes d/dx. (C.11)

Eqn (C.11) shows that Z(l′) just depends on the monotonically decreasing function I(x) defined by
Eqn (C.9) and sketched in Fig C.2. The integrand of I(x) is sketched in Fig C.1.

C.2 Small x = g/2

For x� 1 we can expand the exponent in Eqn (C.9) in powers of x to obtain

I(x) ∼
∞

∑
r=0

(−x)r

r!

∫ 1

0
tr−1/2 log(1/t)1/2 dt as x→ 0 (C.12)

=
∞

∑
r=0

(−x)r

r!

∫
∞

0
2s2 exp(−(r +1/2)s2)ds (after substituting s2 = log(1/t)) (C.13)

=
√

π

2

∞

∑
r=0

(−x)r

r!
(r +1/2)−3/2 (since

∫
∞

0
x2e−x2

dx =
√

π/4) (C.14)

=
√

2π

{
1− x

3
√

3
+

x2

2! 5
√

5
− . . .

}
(C.15)

which implies, after substituting into Eqn (C.11),

Z ∼ −2
√

2πx

{
∞

∑
r=2

(−x)r

r!
(r +1/2)−3/2[r(r−1)+2r +1/4]+ (1/4)(1/2)−3/2− x(9/4)(3/2)−3/2

}
as x→ 0

= −2
√

2πx

{
∞

∑
r=2

(−x)r

r!
(r +1/2)1/2 +

√
1/2− x

√
3/2

}
(C.16)

= −2
√

2πx
∞

∑
r=0

(−x)r

r!
(r +1/2)1/2 (C.17)

= −2
√

πx
{

1−
√

3x+
√

5x2/2!− . . .
}

. (C.18)

This is Eqn (A.12) again (recall that x = g/2 = exp(l′)). As before, it is in fact theoretically valid (con-
vergent) for all g/2, although difficult in practice to sum numerically for the (large) values of g/2 that
are needed in practice.

C.3 Large x = g/2

The extension to Watson’s lemma (eq Sec 6.4, Bender and Orszag, 1999 [2]) given by Theorem 1.2,
Chapter 9 of Olver, 1974 ([12]), namely∫ 1

0
e−xt

(
∞

∑
s=0

ast(s+λ−µ)/µ

)
logβ (1/t)dt ∼ a0

logβ x
xλ/µ

∞

∑
r=0

(−1)r
(

β

r

)
Γ(r)(λ/µ)

logr x
as x→ ∞, for β ,λ ,µ > 0,

(C.19)
shows that

I(x)∼
√

logx
x

∞

∑
r=0

(−1)r
(

1/2
r

)
Γ(r)(1/2)

logr x
as x→ ∞. (C.20)
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Integrands of I(x) and -I′(x)
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x = 0
x = 1
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Figure C.1: Integrands of I(0), I(1), I(10) and I(100) (solid), as given by Eqn (C.9), and
integrands of −I′(0),−I′(1),−I′(10) and −I′(100) (dashed), as given by Eqn (C.27).

I(x) / √(2π)
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x
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0.4
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1.0

1.2

∫ 01  e
xp

(-
xt

) 
(-

lo
g

t/
t)

1/
2  d

t 
/ √

(2
π)

I(x) / √(2π)

1 - x/3√3

√(log x / 2x)

{∑k=0
0  sk (atan(kπ/x) + Im[E1(x+ikπ)])} / √(2π)

{∑k=0
99  sk (atan(kπ/x) + Im[E1(x+ikπ)])} / √(2π)

{∑k=0
9999  sk (atan(kπ/x) + Im[E1(x+ikπ)])} / √(2π)

{∑k=0
99  sk (atan(kπ/x) + Im[E1(x+ikπ)]) + Itail} / √(2π)

Figure C.2: I(x)/
√

2π, Eqn (C.9), and its leading order approximations for small x,
Eqn (C.15), large x, Eqn (C.23), the 1, 100 and 10 000 term partial sums, for all x,
Eqn (C.58) and the augmented 100 term partial sum, (C.63).
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The ability to expand I(x) in this way is the key reason for writing Z in terms of I(x).

Since (
1/2

r

)
=

(−1)r+1(2r)!
(2r−1)(2rr!)2 , (C.21)

it follows that Eqn (C.20) can be rewritten as

I(x) ∼ −
√

logx
x

∞

∑
r=0

(2r)!
(2r−1)(2rr!)2

Γ(r)(1/2)
logr x

as x→ ∞ (C.22)

=

√
π logx

x

{
1− Γ′(1/2)

2
√

π logx
− Γ′′(1/2)

8
√

π log2 x
− . . .

}
(C.23)

where values of the rth derivative of the gamma function at argument 1/2, Γ(r)(1/2), are given in
App B. (Substitution of Eqn (C.22) into Eqn (C.8), shows that Olver’s theorem, Eqn (C.19), which is
given for β > 0, in fact holds for β =−1/2 too. This is not surprising. The underlying theorem (Lemma
3 of Erdélyi, 1961 [6]) is true for all real β provided the upper limit of the integral is less than 1. If
β >−1 the integral converges even if the upper range of integration is 1.)

Substituting Eqn (C.22) into Eqn (C.10) shows that (defining y = logx)

Z ∼ 4
√

2
d2

dy2

{
∞

∑
r=0

(2r)!
(2r−1)(2rr!)2 Γ

(r)(1/2) y−r+1/2

}
as x→ ∞ (C.24)

=

√
2
y3

{
∞

∑
r=0

(2r +1)!
(2rr!)2 Γ

(r)(1/2) y−r

}
(C.25)

=

√
2π

log3 x

{
1+

3Γ′(1/2)
2
√

π logx
+

15Γ′′(1/2)
8
√

π log2 x
+ . . .

}
. (C.26)

This is Eqn (A.18) again (note that Γ(r +3/2)/Γ(r +1) = (
√

π/2)(2r +1)!/(2rr!)2). As before, the first
few terms are woefully inaccurate for the modest values of l′ = logx needed in practice, and, because
the series is divergent, adding more terms soon makes things even worse.

It is reassuring that the same expansion in inverse powers of l′ appears by this method and by the
method of Sec A.3. If there were a converging, or even a less rapidly diverging, expansion in (say)
inverse powers of g, then Watson’s lemma might be expected to have found it. Eqn (A.18) appears to
be the best that can be done in the large l′ limit of Z(l′).

C.4 General g = x/2

We note that formulating the problem in terms of I(x) allows us to derive a theoretically exact solution
to the original problem. Instead of I(x) we examine

−I′(x) =
∫ 1

0
exp(−xt)(−t log t)1/2 dt. (C.27)

We now expand (−t log t)1/2, the dashed blue curve in Fig C.1, as a Fourier sine series:

(−t log t)1/2 =
∞

∑
k=0

sk sin(kπt) (C.28)

where

sk = 2
∫ 1

0
(−t log t)1/2 sin(kπt)dt. (C.29)
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The first 100 sk, numerically calculated, are shown in Fig C.3. The oscillations result from the near
symmetry of (−t log t)1/2 about t = 1/2 (Fig C.1): if this function were exactly symmetric then the even
coefficients s2m would vanish. In fact, they are about half the size of their odd neighbours s2m±1.

Also shown in Fig C.3 is the asymptotic form of sk as k→∞, which can be estimated in the following
way. The idea comes from a similar calculation of limx→∞

∫ 1
0 log t exp(ixt)dt given in Example 1, Section

6.6 of Bender and Orszag, 1999 ([2]).

We consider ∫
C0

exp(ikπt)(−t log t)1/2 dt (C.30)

where C0 is the contour in the complex t-plane from 0 to 1 along the line Im(t)= 0. We take the principal
values of the logarithm and the square root. By Cauchy’s theorem we can deform the integral along
C0 into the sum of integrals along three other contours: C1, from t = 0 to t = i∞ along the line Re(t) = 0;
C2, from t = i∞ to t = 1 + i∞ along the line Im(t) = ∞; and C3, from t = 1 + i∞ to t = 1 along the line
Re(t) = 1.

Along C1 we write t = is, where s goes from 0 to ∞, and split the s integration range into three:∫ (kπ)−2

0 ,
∫ 1
(kπ)−2 and

∫
∞

1 . For the first integral, we find∫ (kπ)−2

0
. . . ds = i

∫ (kπ)−2

0
e−kπs (−is log(is))1/2 ds (C.31)

= ieiπ/4
∫ (kπ)−2

0
e−kπs

(
−s logs

(
1+

iπ
2logs

))1/2

ds. (C.32)

Since we may assume kπ to be greater than eπ/4, | logs|> π/2 over the range of integration, and we
could therefore imagine expanding the radical in the integrand in inverse powers of the increasingly
(as kπ → ∞) large quantity logs. We also note that the minimum value of the exponential, e−1/kπ , is
close to unity in the limit. To leading order, then,∫ (kπ)−2

0
. . . ds ≈ ieiπ/4

∫ (kπ)−2

0
(−s logs)1/2 ds (C.33)

= 2ieiπ/4
∫

∞

√
2logkπ

u2 exp(−3u2/2)du where u2 =− logs (C.34)

= ieiπ/4(1/9)
(√

6π erfc
(√

3logkπ

)
+6
√

2logkπ/(kπ)3
)

(C.35)

= O(
√

logkπ(kπ)−3) as kπ → ∞, (C.36)

because erfc (x)∼ e−x2
/x
√

π as x→ ∞ (Eqn 7.1.23, Abromowitz and Stegun, 1965 [1]).

In the second integral we subsitute u = kπs to obtain∫ 1

(kπ)−2
. . . ds = i(kπ)−3/2

∫ kπ

(kπ)−1
e−uu1/2 (−i log(iu/kπ))1/2 du (C.37)

= i(kπ)−3/2 (i log(kπ/i))1/2
∫ kπ

(kπ)−1
e−uu1/2

(
1− logu

log(kπ/i)

)1/2

du. (C.38)

Over this range of integration, | logu/ log(kπ)|< 1 which implies | logu/ log(kπ/i)|< 1 since | log(kπ/i)|>
| log(kπ)|. Hence we could expand the radical in inverse powers of the increasingly large number
logkπ. The leading term as kπ → ∞ would be∫ 1

(kπ)−2
. . . ds ∼ i(kπ)−3/2 (i log(kπ/i))1/2

∫ kπ

(kπ)−1
e−uu1/2 du (C.39)

= i(kπ)−3/2 (i log(kπ/i))1/2
(∫

∞

0
u1/2e−u du+O((kπ)−3/2)

)
(C.40)

= i(kπ)−3/2 (i log(kπ/i))1/2 (
Γ(3/2) =

√
π/2

)
. (C.41)
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The next term in Eqn (C.38) as kπ → ∞ would be∫ 1

(kπ)−2
. . . ds ∼ i(kπ)−3/2 (i log(kπ/i))1/2 (−1/2log(kπ/i))

∫ kπ

(kπ)−1
e−uu1/2 logu du (C.42)

= i(kπ)−3/2 (i log(kπ/i))1/2 (−1/2log(kπ/i))
(∫

∞

0
u1/2e−u logu du+O(log(kπ)(kπ)−3/2)

)
= i(kπ)−3/2 (i log(kπ/i))1/2 (−1/2log(kπ/i))Γ

′(3/2). (C.43)

It follows from App B that Γ′(3/2) = Γ(3/2)ψ(3/2) where ψ(3/2) = ψ(1/2)+2≈ 0.0365. (This is small
because 3/2≈ 1.46163, the positive zero of ψ (Sec 6.3.19, Abromowitz and Stegun, 1965 [1]).)

In the third integral we write s = 1+u to obtain∫
∞

1
. . . ds = ie−kπ

∫
∞

0
e−kπu (−i(1+u)(iπ/2+ log(1+u))1/2 du (C.44)

= ie−kπ
√

π/2
∫

∞

0
e−kπu ((1+u)(1− (2i/π) log(1+u))1/2 du (C.45)

= ie−kπ
√

π/2
∫

∞

0
e−kπu (1+O(u)) du (C.46)

∼ ie−kπ
√

π/2 (kπ)−1 as kπ → ∞ by Watson’s lemma, (C.47)

and this is smaller than any inverse power of kπ in the limit.

Overall, then, from Eqns (C.36), (C.41), (C.43) and (C.47),∫
C1

exp(ikπt)(−t log t)1/2 dt ∼ e3iπ/4

(kπ)3/2 (log(kπ/i))1/2√
π/2 [1−ψ(3/2)/2log(kπ/i)] as kπ → ∞. (C.48)

The integral along C2 vanishes as t→ i∞ because of the exp(ikπt) factor.

Along C3 we write t = 1+ is to get∫
C3

exp(ikπt)(−t log t)1/2 dt = i
∫ 0

∞

eikπe−kπs (−(1+ is) log(1+ is))1/2 ds (C.49)

∼ −ie−iπ/4(−1)k
∫

∞

0
s1/2e−kπs (1+O(s)) ds as kπ → ∞ (C.50)

∼ −ie−iπ/4(−1)k(kπ)−3/2 (
Γ(3/2) =

√
π/2

)
, (C.51)

by Watson’s lemma.

Combining Eqns (C.48) and (C.51), we find from Eqn (C.29) that

sk = 2Im
∫

C1+C2+C3

exp(ikπt)(−t log t)1/2 dt (C.52)

∼
√

π

(kπ)3/2 Im
{

e3iπ/4 (log(kπ/i))1/2 [1−ψ(3/2)/2log(kπ/i)]− ie−iπ/4(−1)k
}

(C.53)

≈ (2π
2k3)−1/2

{
log(kπ)1/2 + log(kπ)−1/2 [π/4−ψ(3/2)/2]− (−1)k

}
. (C.54)

Eqn (C.54) is within 1% of the numerical value for k > 65. Note that it correctly captures the (−1)k

oscillations of the true values. The ‘DC’ value of sk as k→ ∞, that is, the one given by Eqn (C.54) but
without the (−1)k contribution from contour C3, is plotted in Fig C.3, as is a k−3/2 curve for guidance.
Since it follows from Eqn (C.54) that sk is O(log(kπ)1/2k−3/2) as k→∞, comparison with the convergent
series ∑k−5/4 (for example) shows that ∑sk is convergent.
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Fourier series expansion coefficients
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k
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sk
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~ k-3/2

Figure C.3: Fourier series coefficients sk defined by Eqn (C.29), and the asymptotic value
as k→ ∞, given by Eqn (C.54) without the alternating (−1)k term.

Supposing then that the calculation/estimation of {sk} is settled, we can substitiute Eqn (C.28) into
Eqn (C.27) to find

−I′(x) =
∞

∑
k=0

sk

∫ 1

0
exp(−xt)sin(kπt)dt (C.55)

=
∞

∑
k=0

sk
kπ

(kπ)2 + x2

(
1− (−1)ke−x

)
(C.56)

which implies, since I(∞) = 0, that

I(x) =
∞

∑
k=0

sk

∫
∞

x

kπ

(kπ)2 + y2

(
1− (−1)ke−y

)
dy (C.57)

=
∞

∑
k=0

sk (arctan(kπ/x)+ Im(E1(x+ ikπ))) (C.58)

since ∫
∞

x

dy
(kπ)2 + y2 =

1
kπ

(π/2− arctan(x/kπ)) =
1

kπ
arctan(kπ/x) , (C.59)

and (from Eqn 5.1.43, p 230, of Abromowitz and Stegun, 1965 [1])∫
∞

x

e−y

(kπ)2 + y2 dy =− 1
kπ

Im(eikπE1(x+ ikπ)), (C.60)

where

E1(z) =
∫

∞

z

e−t

t
dt =−c− logz−

∞

∑
l=1

(−z)l

ll!
for |arg(z)|< π (C.61)
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is the (principal branch of the) exponential integral, and c ≈ 0.57721 is the Euler-Mascheroni con-
stant. Since arctan(kπ/x) ∼ π/2− x/kπ → π/2 and E1(x + ikπ) ∼ (−1)ke−x/kπ → 0 as k→ ∞, and, as
established above, ∑sk is a convergent series, it follows that Eqn (C.58) is a usable solution to the
problem of calculating I(x), and hence, from Eqn (C.11), Z(l′). It therefore gives an exact solution to
the original problem.

In practice, however, Eqn (C.58) converges very slowly. This is clear from Fig C.2, which includes
the 1, 100 and 10 000 term partial sums of Eqn (C.58)1, which are respectively hopeless, 55% ac-
curate and 94% accurate. (The last 9 000 Fourier coefficients for the final calculation were estimated
using Eqn (C.54).)

This slow convergence can be explained and to some extent corrected by considering the large k
behaviour of sk (Eqn (C.54)) and of arctan(kπ/x)+ Im(E1(x+ ikπ)). We find the leading order error in
truncating Eqn (C.58) after K� x/π terms to be

Itail(x) ≈ (2π
2)−1/2

∞

∑
k=K

k−3/2
(
(logkπ)1/2− (logkπ)−1/2 [π/4−ψ(3/2)/2]

)
(π/2− x/kπ) (C.62)

≈
√

logKπ

2K

{
1+

[1+π/4−ψ(3/2)/2]
logKπ

+O((logKπ)−2)
}
−
√

2x
3π2

√
logKπ

K3 (C.63)

after approximating the sums by integrals and the resulting complementary error functions by the ap-
propriate number of terms in their asymptotic expansions. The leading order behaviour,

√
log(Kπ)/2K,

suggests why even a 10 000 term partial sum fails to deliver 1% accuracy. The term proportional to x
is formally of higher order in K−1, but it can make a slight contribution to the sum if x is comparable
to the truncation number K. For K = 100, Eqn (C.63) ranges from 0.2217 at x = 0 to 0.2102 at x = 100.
When this is added to the 100 term partial sum it produces an estimate of I(x) that is within 1.6%
of the correct value for 0 ≤ x ≤ 100 (see Fig C.2). This is much better than the unaugmented 10 000
term partial sum, which takes over 100 times longer to compute and is still 6% in error.

Eqns (C.58) and (C.63) therefore offer an interesting theoretical and tolerably accurate practical
solution to the problem of calculating I(x), at least for x between 0 and 100.

C.5 Summary

We have re-expressed the Z(l′) function of App A in terms of a simpler definite integral I(g/2), de-
fined in Eqn (C.9). It is intriguing that the problem can be reduced to such a simple form — and
correspondingly frustrating that it does not appear to be expressible in simple closed form. Nonethe-
less, this integral does allow the approximate form of Z(l′) for small and large l′ to be derived in a
unified and fairly rigorous way. At the expense of some rather involved calculations, it also provides a
formal solution for all l′.

1We evaluate E1(z) for complex z with the hybrid solution (see Chapter 5, Abromowitz and Stegun, 1965 [1])

E1(z) =


−c− logz−∑

10b|z|c
l=1

(−z)l

ll! for |z| ≤ 5

e−z

z ∑
b|z|c−1
l=0

l!
(−z)l for |z|> 5
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