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Abstract

This report contains brief notes on the bending angles and slantwise total electron contents that
result from the use of a single, spherically symmetric ‘VaryChap’ ionosphere. This is a simple but
realistic model of the ionospheric electron density distribution whose shape can be easily altered. It
is used to give some insight into the sensitivity of radio occultation results to the shape of the electron
density profile.
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1 Introduction

This report is an examination of the sensitivity of radio occultation measurements to the shape of the
ionospheric electron density profile. This is done by calculating the bending angle and slantwise total
electron content (STEC), both of which are measurable by radio occultation methods, generated by
a spherically symmetric ionosphere whose electron density profile follows the so-called ‘VaryChap’
distribution. This is an asymmetrical distribution, characterised above its peak by an exponentially
decreasing density whose e−1 decay length increases linearly with height ([1]). There is some recent
observational support, based on COSMIC RO measurements, for the suggestion that the electron
density above its peak can be modelled with a VaryChap electron density distribution ([5]). The im-
portant thing for our purposes is that a VaryChap layer is a physically reasonable model of ionospheric
electron density, which has a simply parametrised shape, and which generates analytically tractable
expressions for quantities that can be measured by radio occultation.

Usefully, the standard Chapman layer distribution is included in the family of VaryChap distributions,
and (revised) results for this distribution are also recorded for completeness.

This study was made in response to the ionospheric products that the EPS-SG mission will attempt
to deliver. These products will be based on measurements up to around 500 km. The ionosphere
generally extends beyond this, and some degree of extrapolation will therefore be required if full iono-
spheric products are to be delivered. If the bending angles and/or STECs up to 500 km are sufficiently
sensitive to the parameters of the VaryChap layer, then there is the hope that these parameters could
be estimated by means of a variational retrieval. If so, then an estimate of the electron density at all
heights would follow straightforwardly. This report is a first look at the feasibility of this hypothesis.

Note that the algebra in this report has not been thoroughly checked. Readers wanting to use any
of the formulas contained within it would be well advised to carry out the calculations themselves.
Please report any errors to the author via the ROM SAF helpdesk at http://www.romsaf.org.
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2 Electron density distribution

In a so-called ‘VaryChap’ layer, the electron density scale height H(r) increases linearly with distance
above the peak r0, thus:

H(r) = H0 + k(r− r0) (2.1)

where k = ∂H/∂ r > 0 is constant. Evidently, H0 = H(r0). As k→ 0 we recover the standard Chapman
layer (Eqn A.1 in Appendix A), whose scale height is independent of distance. Note that there is no
requirement that r > r0 in Eqn 2.1. Thus, H decreases below the peak until it vanishes at r = r0−H0/k.

Rishbeth and Garriott [1] use H(r) to define a new vertical coordinate u, defined by du/dr = H(r)−1,
from which Eqn (2.1) implies, assuming we define u to be zero at r = r0,

u(r) = k−1 log
(

1+
k(r− r0)

H0

)
, (2.2)

∼ (r− r0)
H0

+O(k) as k→ 0. (2.3)

Eqn (2.2) shows that eku = H(r)/H0.

Substituting Eqn (2.2) into the basic equation (Rishbeth and Garriot 1969, Eqn 315) for the rate of
electron production per unit volume, q, shows that

q ∝ H(r)−1 exp
(
1−u− e−u) , (2.4)

which implies that, at equilibrium, when n2
e ∝ q (because electron production then balances recombi-

nation, which can be taken to occur at a rate proportional to n2
e (e.g. [2])),

ne(r) = nmax
e (k)exp

[
1+ k

2
(
1− ũ− e−ũ)] . (2.5)

In this equation ũ is related to u via
ũ = u+ log(1+ k). (2.6)

The VaryChap layer Eqn (2.5) peaks at ũ = 0, which corresponds to

r− r0

H0
= k−1

(
(1+ k)−k−1

)
(2.7)

∼ −k +O(k2) as k→ 0. (2.8)

Since k > 0, this means that the VaryChap layer peaks below r0, i.e. the place where H(r) = H0.

The peak electron density, nmax
e (k) in Eqn (2.5) is not constant, but depends on k in the following

way:

nmax
e (k)/nmax

e (0) = e−k/2(1+ k)(1+k)/2 (2.9)
∼ 1+ k2/4+O(k3) as k→ 0. (2.10)

(This disagrees with Rishbeth and Garriott [1], who say there’s no dependence on k, but Eqn (2.9)
follows directly from their Eqns 315 and 322. We suggest this is because Rishbeth and Garriott’s
scale height H appears to be constant below the peak height r0, whereas our model H (Eqn 2.1)
decreases below r0.)
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For the STEC and bending angle forward models, we would probably want to use nmax
e (0) as the

variable, since in any retrieval that uses them we would hope to be able to ignore (at least intially)
error correlations between (pairs of) ionospheric elements of the state vector.

The TEC is found by integrating the ne(r) in Eqn (2.5) with respect to r from r0−H0/k (where
H(r) = 0) to ∞. We need −1 < k < 1 for the integral to converge, but in practice Olivares-Pulido et. al.
[5] suggest k ≈ 0.1, so this appears to be a safe assumption. We find

T EC = nmax
e (0)H0

√
e2(1−k)/2

Γ((1− k)/2) (2.11)

∼ nmax
e (0)H0

√
2πe

[
1+

k
2
(γ + log2)+O(k2)

]
as k→ 0. (2.12)

Here, γ ≈ 0.5772 is the Euler-Mascheroni constant. Eqn 2.12 takes the right value (see Eqn (A.2) with
H = H0) at k = 0. And it agrees with numerically integrated TECs. Note that the TEC depends on k
even if r0 and H0 are fixed.

Fig 2.1 shows various ne(r) profiles for VaryChap layers with some realistic values of k. The scale
height above the peak appears to increase with k, as expected.

Fig 2.2 shows the variation with k of the TEC, the peak electron density and the peak height. As k
goes from 0 to 0.2, the TEC increases by around 20%, the peak height falls by around 0.2H0 and the
peak concentration hardly changes at all.
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VaryChap electron density profiles
 as a function of k = dH/dr
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Figure 2.1: ne(r,k)/nmax
e (0) given by Eqns (2.5) and (2.6) for realistic values of k.
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VaryChap parameters as a function of k
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Figure 2.2: Variation with k of TEC, Eqn (2.11), peak electron density, Eqn (2.9), and peak
height, Eqn (2.7). Dotted lines are the leading order approximations as k→ 0.
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3 Bending angle

Substituting Eqn (2.5) in the basic bending angle integral (see Appendix A of RSR 17, [3]) shows that
the generalised ‘Zorro’ function as a function of k = ∂H/∂ r and l can be written as

Z̃(k, l) = (1+ k)
3+k

2

∫
∞

u∗

[
exp
(
−k +3

2
ũ
)
− exp

(
−k +1

2
ũ
)]

exp
(
− k+1

2 e−ũ
)

dũ√
k−1(ekũ(1+ k)−k−1+ kl)

(3.1)

= 2
∫

∞

w∗

[(
1− kl + kw2)− 3k+3

2k − (1+ k)
(
1− kl + kw2)− 3k+1

2k

]
× exp

(
−(1/2)

(
1− kl + kw2)− 1

k

)
dw, where w2 = k−1

(
ekũ(1+ k)−k−1+ kl

)
(3.2)

∼ 2
√

g
∫

∞

0

(
ge−3w2/2− e−w2/2

)
exp
(
−(g/2)e−w2

)
dw as k→ 0

= Z(l) as in Eqn (A.5).

Here, l = (r0−a)/H is the normalised distance below the peak of the Chapman layer, and g = exp(l).
The lower limits of these bending angle integrals are defined by (r∗− r0)/H0 =−k−1, where the scale
height H(r) vanishes. In terms of the independent variables ũ and w in Eqns (3.1) and (3.2), this
condition translates into (see Eqns (2.2) and (2.6))

ũ∗ = k−1 log [max(1− kl,0)]+ log(1+ k) (3.3)

and

w2
∗ = max(l− k−1,0). (3.4)

The limit as l′ → −∞ of Z̃(k, l), for which w∗ = 0, can be found by substituting L = 1− kl → ∞ in
Eqn (3.2) to obtain

Z̃(k, l) = 2(1+ k)
3+3k

2k

∫
∞

0

[
(1+ k)−

k+3
2 L−

3+3k
2k
(
1+ kw2/L

)− 3+3k
2k − (1+ k)−

1+k
2 L−

1+3k
2k
(
1+ kw2/L

)− 1+3k
2k

]
× exp

(
−(L−1/k/2)

(
1+ kw2/L

)−1/k
)

dw

∼ 2L−
3+3k

2k

∫
∞

0

(
1+ kw2/L

)− 3+3k
2k dw−2(1+ k)L−

1+3k
2k

∫
∞

0

(
1+ kw2/L

)− 1+3k
2k dw as L→ ∞ (3.5)

=
√

π

k

[
(1− kl)−

3+2k
2k

Γ((3+2k)/2k)
Γ((3+3k)/2k)

− (1+ k)(1− kl)−
1+2k

2k
Γ((1+2k)/2k)
Γ((1+3k)/2k)

]
. (3.6)

By means of Stirling’s approximation to the Gamma function, which shows that Γ(z)/Γ(z+1/2)∼ z−1/2

as z→ ∞, we find that the last expression tends to −
√

2πg as k→ 0, in agreement with Eqn (A.8).
(The second term in Eqn (3.6) dominates in this limit because the first term is O(g) (� 1) times as
big.)

The limit as l′→ ∞ of Z̃(k, l), for which w∗ =
√

l− k−1, can be found by substituting v2 = 1− kl + kw2

in Eqn (3.2) to obtain
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Z̃(k, l) =
2

k
√

l

∫
∞

0

[
v−(3+2k)/k− (1+ k)v−(1+2k)/k

]
exp
(
−(1/2)v−2/k

) dv√
1+(v2−1)/kl

(3.7)

∼ 2
k
√

l

∫
∞

0

[
v−(3+2k)/k− (1+ k)v−(1+2k)/k

]
exp
(
−(1/2)v−2/k

)
dv+O(l−1) as l→ ∞ (3.8)

=
2√

l

∫
∞

0

[
(2y)(1+k)/2− (1+ k)(2y)(−1+k)/2

]
e−ydy (where y = (1/2)v−2/k) (3.9)

=
2√

l

[
2(1+k)/2

Γ((3+ k)/2)− (1+ k)2(−1+k)/2
Γ((1+ k)/2)

]
(3.10)

= 0 exactly, since Γ((3+ k)/2) = ((1+ k)/2)Γ((1+ k)/2). (3.11)

This makes sense: it amounts to integrating dne/dr with respect to r in the original Abel integral,
Eqn (A.4), without including the ‘geometric’ factor (r2−a2)−1/2. It therefore gives [ne(r)]

∞

a , which equals
0 below the ionosphere. We therefore need to include the next term in the expansion of (1 +(v2−
1)/kl)−1/2 in Eqn (3.7), namely, −(v2−1)/2kl. Using this in Eqn (3.8) gives1

Z̃(k, l) ∼ −2

2k2
√

l3

∫
∞

0

[
v−(3+2k)/k− (1+ k)v−(1+2k)/k

]
(v2−1)exp

(
−(1/2)v−2/k

)
dv as l→ ∞(3.12)

=
−1

k
√

l3

∫
∞

0

[
(2y)(1−k)/2− (1+ k)(2y)(−1−k)/2

]
e−ydy (where y = (1/2)v−2/k) (3.13)

=
−1

k
√

l3

[
2(1−k)/2

Γ((3− k)/2)− (1+ k)2(−1−k)/2
Γ((1− k)/2)

]
(3.14)

=
−2−(1+k)/2

k
√

l3
[2 ((1− k)/2)Γ((1− k)/2)− (1+ k)Γ((1− k)/2)] (3.15)

= 2(1−k)/2 l−3/2
Γ((1− k)/2). (3.16)

The last expression asymptotes to
√

2π/l3 as k→ 0, in agreement with Eqn (A.10) (l′/l → 1 as
l→ ∞).

Fig 3.1 shows the generalised Zorro function, calculated numerically from Eqn (3.2), for various
values of k. Also shown are the leading order asymptotic formulas Eqn (3.6), valid as l′→−∞, which
can be seen to be reasonably accurate for l′ < −5, and Eqn (3.16), valid as l′→ ∞, which is pretty
poor even for l = 10. It does have roughly the right shape, however.

In view of the closeness of the bending angle curves in Fig 3.1 there would seem to be little hope
of learning something about the value of k by the use of bending angles in the usual range 3 . l . 10.
There therefore seems little point in trying to develop (Padé?) approximations to Z̃(k, l).

1Note that the −1 element of (v2−1) in Eqn(3.12) also makes zero contribution, for the same reasons as above.
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VaryChap bending angle profiles
 as a function of k = dH/dr
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Figure 3.1: Variation with k of Z̃(k, l), calculated numerically from Eqn (3.2). Also shown
are the leading order asymptotic approximations as l′ → −∞, Eqn (3.6), and as l′ → ∞,
Eqn (3.16).
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4 Slantwise TEC

Assuming a straight line path between LEO and GNSS, we find the slantwise total electron content,
STEC, at impact height a, between two satellites at infinity, to be given by

ST EC(a) = 2
∫

∞

a
ne(r)

r√
r2−a2

dr (4.1)

≈ 2
r0√

r0 +a

∫
∞

a
ne(r)

1√
r−a

dr (4.2)

= 2r0 nmax
e

√
eH

r0 +a
P̃(k, l′), say. (4.3)

In the above, r/
√

r2−a2 has been approximately factorised as r0/
(√

r0 +a
√

r−a
)

to ensure that
Eqns (4.1) and (4.2) take the same value for a ‘thin’ ionosphere, defined by ne(r) = T EC δ (r− r0),
which is an appropriate limit for this problem.

Substituting Eqn (2.5) into Eqn (4.2) shows that the generalised ‘Pimpernel’ function as a function
of k = ∂H/∂ r and l is given by

P̃(k, l) = (1+ k)
1−k

2

∫
∞

u∗

exp
(
−1−k

2 ũ− k+1
2 e−ũ

)
dũ√

k−1(ekũ(1+ k)−k−1+ kl)
(4.4)

= 2
∫

∞

w∗

(
1− kl + kw2)− k+1

2k exp
(
−(1/2)

(
1− kl + kw2)− 1

k

)
dw (4.5)

where w2 = k−1
(

ekũ(1+ k)−k−1+ kl
)

∼ 2
√

g
∫

∞

0
exp
(
−1

2
w2− g

2
e−w2

)
dw as k→ 0

= P(l) in Eqn (A.26).

The lower limits of these STEC integrals are as defined in Eqns (3.3) and (3.4).

The limit as l′ → −∞ of P̃(k, l), for which w∗ = 0, can be found by substituting L = 1− kl → ∞ in
Eqn (4.5) to obtain

P̃(k, l) = 2L−
k+1
2k

∫
∞

0

(
1+ kw2/L

)− k+1
2k exp

(
−(L−1/k/2)

(
1+ kw2/L

)−1/k
)

dw (4.6)

∼ 2L−
k+1
2k

∫
∞

0

(
1+ kw2/L

)− k+1
2k dw as L→ ∞, assuming k > 0 (4.7)

=
√

π

k
(1− kl)−

1
2k

Γ(1/2k)
Γ((k +1)/2k)

. (4.8)

Stirling’s approximation to the Gamma function shows that the last expression asymptotes to
√

2πg
as k→ 0, in agreement with Eqn (A.28).

If we try to extend the utility of this result by expanding the exponential in Eqn (4.6) and integrating
term-by-term, we end up with a series of increasingly large and oscillatory terms, which proves to be
impossible to sum numerically beyond l = 4.2 for k = 0, and l = 2.6 for k = 0.2. This is not far enough,
as l could be as small as 3 for a thick ionospheric F-layer.
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The limit as l′→ ∞ of P̃(k, l), for which w2
∗ = l− k−1, can be found by substituting v2 = 1− kl + kw2 in

Eqn (4.5) to obtain

P̃(k, l) =
2

k
√

l

∫
∞

0
v−1/k exp

(
−(1/2)v−2/k

) dv√
1+(v2−1)/kl

(4.9)

∼ 2
k
√

l

∫
∞

0
v−1/k exp

(
−(1/2)v−2/k

)
dv+O(l−1) as l′→ ∞ (4.10)

= 2(1−k)/2 l−1/2
Γ((1− k)/2) (after substituting y = (1/2)v−2/k). (4.11)

The last expression asymptotes to
√

2π/l as k→ 0, in agreement with Eqn (A.29) (l′/l→ 1 as l→∞).

Fig 4.1 shows the generalised Pimpernel function, calculated numerically from Eqn (4.5), for vari-
ous values of k. Also shown are the leading order asymptotic expansions, Eqns (4.8) and Eqn (4.11).
The first can be seen to be a good approximation five or more scale heights above the electron
density peak. The second is less good, although it captures the trends in l and k below the peak.

There is a decent spread (up to a factor of ten) in the STECs above the peak as k goes from
0 to 0.2. This is far greater than the error in the forward model of a few per cent, which suggests
that it might be possible to infer something about k from analysis of observed STECs (i.e. excess
phase delays). How much of the information in the profile shape might be interpreted in terms of
the other parameters — nmax

e (0),H0 etc — is unclear. It could be worth investigating. To do so would
require, in a 1DVAR context, an expression for P̃(k, l) that could be used in a forward model. One
could numerically integrate Eqn (4.3) directly, but an approximate form might be quicker and accurate
enough. We develop a first such approximation here.

Eqns (4.8) and (4.11) give the limiting form of P̃(k, l) for large negative and positive l′ respectively.
By combining their fourth powers ‘reciprocally’, thus

P̃0(k, l) =


(√

π

k (1− kl)−
1
2k

Γ(1/2k)
Γ((k+1)/2k)

)4
(√

21−k

l Γ((1− k)/2)
)4

(√
π

k (1− kl)−
1
2k

Γ(1/2k)
Γ((k+1)/2k)

)4
+
(√

21−k

l Γ((1− k)/2)
)4


1/4

, (4.12)

we have an expression, valid for all l, that conforms to these limits. In fact, Eqn (4.8) is only valid for
l < k−1, while Eqn (4.11) is only valid for l > 0, so that Eqn (4.12) is only applicable in the overlap
region 0 < l < k−1. Outside this range, P̃0(k, l) equals whichever asymptotic form, Eqn (4.8) or (4.11),
is valid. (In other words, we replace an invalid value with an infinite value in Eqn (4.12).) The jump
in form of the function at l = 0 is responsible for the power p = 4 appearing in Eqn (4.12). Using the
natural choice p = 1 leads to a cusp in P̃0(k, l) at l = 0, at least as k→ 0. p = 2 is continuous at l = 0
but not differentiable there; p = 3 is differentiable once; while p = 4 is differentiable twice (again, at
least as k→ 0), which is desirable in something that could be used in a tangent linear or adjoint code.

The ‘hybrid’ expression P̃0(k, l) in Eqn (4.12), is included in Fig 4.1. It can be seen to exceed P̃(k, l)
in Eqn (4.3) by no more than about 50% in the range −10 < l < 10. We therefore make a Padé
approximation to this ratio (minus one), thus

P̃(k, l)
P̃0(k, l)

−1≈ ∑
5
i=0 pi(k)θ i

∑
5
i=0 qi(k)θ i

, (4.13)

where θ = sinh−1(el/4), p0 = 0,q0 = 1 and p5 = 0. (By construction, P̃(k, l)/P̃0(k, l) tends to 1 as l→±∞

(i.e. as θ → 0 and ∞), which explains the choice of p0 and p5.)

Fig 4.2 shows the Padé coefficients p0 to p5 and q0 to q5, calculated for 10 values of k between 0 and
0.225. These coefficients are calculated by means of a non-linear least squares fitting procedure1,

1The IDL subroutine lmfit.
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VaryChap STEC profiles as a function of k = dH/dr
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Figure 4.1: Variation with k of P̃(k, l), calculated numerically from Eqn (4.5). Also shown
(dotted lines) are the leading order asymptotic approximations as l′→−∞, Eqn (4.8), and
as l′ → ∞, Eqn (4.11). The ‘hybrid’ function P̃0(k, l), Eqn (4.12), is also shown (dashed
lines).
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STEC Pade coeffs as a function of k
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Figure 4.2: Coefficients in the Padé approximation to P̃(k, l), Eqn (4.13), calculated (via a
least squares fitting procedure) for 10 values of k. Also shown (dashed/dotted lines) are
quadratic (in k) fits to those coefficients.
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in which the initial estimates of pi(k) and qi(k) are found by demanding that the approximate curve
matches the exact solution at selected values of l. ‘Measurement errors’ are taken to be proportional
to
√
|l− l0|, where l0 = 0.8047 is the approximate location of the maximum of P(0, l). This ensures

a closer fit in the vicinity of the peak. (There is some sensitivity to these choices.) The resulting
approximations to P̃(k, l), and their fractional errors, are shown in Fig 4.3 for 5 values of k. The Padé
approximations are clearly doing a reasonable job over this range of k and l.

Also shown in Fig 4.2 are quadratic approximations for the variation of pi(k) and qi(k) with k. In
other words, we write

pi(k)≈ p(0)
i + p(1)

i k + p(2)
i k2 for i = 0,1, . . .5, (4.14)

and similarly for qi(k). The coefficients in these fits, also found by a least squares fitting procedure2,
are given in Table 4.1. The quadratic approximations to pi(k) and qi(k) allow us to estimate P̃(k, l)
for any k and l, by combining Eqns (4.14), (4.13) and (4.12). The error in doing so, for a compre-
hensive range of k and l, is shown in Fig 4.4. It is within 2.0% everywhere, which is probably good
enough for these purposes. As suggested by Fig 4.4, however, the approximations get worse as k
increases, probably on account of the increasingly important k2 term in Eqn (4.14). In any practical
implementation of these ideas, 0.2 might need to be enforced as a hard upper limit on allowable k
values. Similarly for 0.0 as a hard lower limit. (If k becomes negative, the scale height H(r) vanishes
above the peak, not below it, and many of the preceding calculations would need to be recomputed.)

Padé coefficients fitting parameters

i p(0)
i p(1)

i p(2)
i

0 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
1 −8.4736594158e-01 3.2821051869e+00 −2.1106434130e+01
2 −2.0708259629e+00 −2.9209398857e-01 9.7343378388e+01
3 6.1101514241e+00 −2.3734170447e+00 −1.4187624752e+02
4 −4.0692658364e+00 2.9494359046e+00 4.9571873289e+01
5 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00

i q(0)
i q(1)

i q(2)
i

0 1.0000000000e+00 0.0000000000e+00 0.0000000000e+00
1 −1.1897558009e+00 −3.2090937125e+01 1.3146993850e+02
2 6.7475341111e+00 1.2318502258e+02 −6.5608725220e+02
3 −6.8014209609e+00 −1.9207177935e+02 9.4540653413e+02
4 9.4595040317e+00 3.4032398902e+01 −2.1810139864e+02
5 6.4751678225e+00 −3.0456523559e+01 1.3565686782e+01

Table 4.1: Fits to Padé coefficients in Eqn (4.14).

2The IDL subroutine poly_fit.
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VaryChap STEC profiles as a function of k = dH/dr
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Figure 4.3: P̃(k, l), Eqn (4.3), for a VaryChap layer, calculated numerically to high pre-
cision, for 5 values of k (solid lines). Also shown are the Padé approximations to P̃(k, l),
Eqn (4.13) (circles), and, with scale on the top axis, the fractional errors of these approxi-
mations (dashed lines).
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Fractional error in Pade approximation to STEC
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Figure 4.4: Fractional error in Eqn (4.13), using the coefficients calculated from Eqn (4.14)
and the data in Table 4.1.
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Direct numerical evaluation of Eqn (4.5), using Simpson’s rule with 36 w-points between w = w∗
and w = 10 (a suitable maximum), also delivers a 2%-accurate solution. Its errors, however, oscillate
systematically for large l, which may not be desirable (not shown). But even if we accept that limitation,
the CPU time needed to do the numerical integration, even on such a coarse grid, is still over forty
times that of the Padé approximations embodied by Eqns (4.14), (4.13) and (4.12). This is brought
out in Fig 4.5, which compares the CPU times and accuracies of the ‘exact’ numerical integration,
the 36-point Simpson’s rule integration and the Padé approximation to P̃(k, l). The trade-off between
speed and accuracy in the various methods is clear. It also seems clear that need to take non-
integral powers in Eqn (4.5) appreciably slows down the direct numerical integrations, because the
k = 0 value, which uses different, analytically calculated formulas, is considerably faster. The Padé
approximation suffers no such variation of CPU time with k.

Fig 4.5 shows that the Padé approximation delivers a speedy, tolerably accurate estimate the slant-
wise TEC function P̃(k, l). Simpson’s rule with 36 points is slower but (usually) more accurate. In ad-
dition, the accuracy of the direct numerical integration can be improved by simply using a finer grid
of w-points. Improving the accuracy of the Padé approximation would demand a lot of effort, with no
guarantee of success.
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CPU times as a function of k
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Figure 4.5: Top: CPU time for one evaluation (1000 l-values between -10 and 10) of
P̃(k, l) as a function of k for ‘exact’ numerical integration (the IDL routine imsl_intfcn),
’direct’ numerical integration, using a 36-point Simpson’s rule estimation, and the Padé
approximation, Eqn (4.13). Bottom: Maximum errors, compared to exact integration, of
the direct and Padé approximations, again as a function of k.
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5 Summary, conclusions and future work

This report records some results, relevant to radio occultation, that follow from the assumption of a
single, spherically symmetric ‘VaryChap’ layer ionosphere. The VaryChap electron density distribution
has been defined and described. In this distribution the electron density scale height is a linearly
increasing function of the height. This means that the scale height is larger than that of an equivalent
Chapman layer above the peak and smaller beneath it. There is some experimental evidence ([5]) to
suggest the existence of such ionospheric electron density profiles, at least above the peak.

The integrals defining the bending angles and slantwise total electron contents (STECs) of a
VaryChap ionospheric layer have been calculated, and leading order asymptotic expressions for the
behaviour far above and far below the electron density peak have been deduced. The bending angles
show little variation with k, the gradient of the scale height with height, which suggests that there is
little point in considering the generalised VaryChap distribution if we are only interested in investigat-
ing ionospheric corrections to bending angles below about 60 km. In these situations the standard
Chapman layer model (e.g. RSR17 [2]) would suffice.

The STECs above the peak electron density, however, show greater variation with k — much
greater than the uncertainty in the forward model — and this raises the possibility of using STEC
measurements, which would be derived from excess phase observations, to infer something about
this parameter of the VaryChap distribution, and, therefore, the entire electron density distribution.

A two per cent accurate approximation for the STEC as a function of k and l, the normalised
distance below the ionospheric peak, has been provided in the form of a Padé approximation.

The bending angles and STECs for a ‘standard’ Chapman layer have been more extensively anal-
ysed. Padé approximations that are 1% accurate have been provided.

Future work in this area could include the following.

• A comparison of the STEC expressions in this report with observational data, to see if the latter
allow any inferences to be drawn about the structure of the ionosphere — in particular, the
gradient of its scale height with distance.

• The development of an approximation to the bending angle functions Z̃(k, l), should it prove
impossible to glean anything about electron density measurements from STEC measurements.

• A study of the impact of finite electron density at the LEO, which has been ignored in this work
by assuming both satellites to be at infinity.
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A Appendix: ‘Standard’ Chapman layer results

A.1 Overview

This appendix records some results that follow from assuming a single, spherically symmetric Chap-
man layer ionosphere, which is a special case of a VaryChap layer in which the gradient of scale
height, k, is zero.

Some of these results have already appeared in RSR 17 [3], but three aspects are new: an im-
proved formula for the bending angles far below the ionosphere; an improved Padé approximation for
the bending angles at all impact heights; and the analysis of the STEC for a Chapman layer.

A.2 Electron density

For a ‘standard’ Chapman layer the electron density is given by

ne(r) = nmax
e exp

(
1
2
(
1−u− e−u)) (A.1)

where u = (r− r0)/H, and nmax
e is the peak electron density, r0 is the height of the peak, and H is

a measure of the thickness of the Chapman layer. The total electron content (TEC) is found, by
integrating the electron density over all heights, to be

T EC =
∫

∞

−∞

ne(r)dr =
√

2πe nmax
e H. (A.2)

A.3 Bending angles

Eqn A.7 of ROM SAF Report 17 shows that

αi(a) = α(a, fi) =
k4

f 2
i

nmax
e

√
4er2

0a2

H(r0 +a)3 Z
(

r0−a
H

)
, (A.3)

where the dimensionless, order 1, function Z is defined by

Z(l) =
∫

∞

−l

(e−3u/2− e−u/2)exp(−1
2 e−u)

√
u+ l

du (A.4)

= 2
√

g
∫

∞

0

(
ge−3w2/2− e−w2/2

)
exp
(
−g

2
e−w2

)
dw, where w2 = u+ l. (A.5)

= 2
√

g
(
gI3/2− I1/2

)
, (A.6)

where
In/2 =

∫
∞

0
exp
(
−n

2
w2− g

2
e−w2

)
dw. (A.7)

Here, u is as before, and l = (r0−a)/H is the H-normalised distance below the peak of the Chapman
layer. g equals exp(l). In practice we are interested in Z(l) for l between about 3 (for a broad F-layer)
and about 10 (for a thin E-layer).

25



Culverwell: Ionospheric profile sensitivity ROM SAF Report 31

A.3.1 l′→−∞

Expanding the exponential and reversing the order of integration and summation leads, eventually
(RSR 17, [3]), to

Z(l) =−2
√

2πel′
∞

∑
r=0

(−el′)r

r!

√
r +1/2 (A.8)

where l′ = l− log2 (and g′ = g/2). This is valid (convergent) for all l′, but the oscillating and rapidly
growing terms render it impossible to sum numerically if l′ is greater than about 3. Euler summation
helps a little, but not enough.

The first, second and 100th partial sums of Eqn (A.8) are shown in Fig A.1, as is the exact, numer-
ically integrated solution.

A.3.2 l′→ ∞

Alternatively we can seek an expansion valid for large l′. Writing s2 = (1/2)exp(−u) in the integrand
of Eqn (A.4), and then expanding the radical, shows, eventually ([3]), that

Z(l) ∼ 2

√
2
l′

∫ √g/2

0

(2s2−1)e−s2

(1−2logs/l′)1/2 ds (A.9)

= 2

√
2

πl′3
∞

∑
r=0

Γ(r +3/2)
r!

Γ
(r)(1/2)(l′)−r. (A.10)

Here, Γ(x) =
∫

∞

0 tx−1e−tdt is the usual Gamma function, and Γ(r)(1/2) is its rth derivative at x = 1/2.
Eqn (A.10) can be derived from Erdélyi and Olver’s extension of Watson’s lemma (RSR 17, App C,
[3]).

The asymptotic expansion Eqn (A.10) is strongly divergent, and the first few terms are not accurate
enough to be useful (RSR 17, [3]). This wild behaviour can be largely tamed by breaking the range
of integration of Eqn (A.9) at s = 1. The first part can then be integrated by parts to yield

Z1(l) = 2

√
2
l′

∫ 1

0

(2s2−1)e−s2

(1−2logs/l′)1/2 ds (A.11)

= 2

√
2
l′


[

−se−s2

(1−2logs/l′)1/2

]1

0

+
1
l′

∫ 1

0

e−s2

(1−2logs/l′)3/2 ds

 (A.12)

= 2

√
2
l′

{
−e−1 +

∞

∑
r=0

(−1)r

r!

[
1−
√

π(r +1/2)l′ e(r+1/2)l′erfc
(√

(r +1/2)l′
)]}

(A.13)

= 2

√
2
l′

{
−e−1 +

√
π

2l′
erf(1)− 3

l′2
∞

∑
r=0

(−1)r

r!(2r +1)2 χ

(√
(r +1/2)l′

)}
(A.14)

where the auxiliary function χ is defined as

χ(x) =
2x2

3
(
1−2x2 +2

√
πx3 exp(x2)erfc(x)

)
∼
{

2x2/3+O(x4) as x→ 0
1+O(x−2) as x→ ∞.

(A.15)

The boundedness of χ(x) as x→ ∞ and the rapidly increasingly denominator ensure that the series
in Eqn (A.14) converges (absolutely) — and rather quickly. (Note that if we extend the upper limit of
Eqn (A.11) to

√
g′ =

√
g/2, we recover the unsummable Eqn (A.8).)
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It remains to compute the tail of the integral, namely

Z2(l) = 2

√
2
l′

∫ √g′

1

(2s2−1)e−s2

(1−2logs/l′)1/2 ds (A.16)

= 2

√
2
l′

∞

∑
r=0

cr

l′r

∫ √g′

1
(−se−s2

)′ logr s ds, where cr = (2r)!/2r(r!)2 (A.17)

= 2

√
2
l′

{[
−se−s2

]√g′

1
+

∞

∑
r=1

(
cr

l′r

[
−se−s2

logr s
]√g′

1
+ r

∫ √g′

1
e−s2

logr−1 s ds
)}

(A.18)

∼ 2

√
2
l′

{
e−1 +

√
π

2l′
erfc(1)+

∞

∑
r=2

cr

l′r
Ir(g′)+O

(√
g′e−g′

)}
as l′→ ∞, (A.19)

where

Ir(g′) = r
∫ √g′

1
e−s2

logr−1 s ds. (A.20)

If r� g′ the integrand of Ir peaks beyond s =
√

g′, and we may estimate the value of Ir, using Laplace’s
method, to be ∼

√
g′e−g′(l′/2)rr/(r− 1) as r→ ∞. This would appear to give a divergent sum (terms

going as cr/2r, the same as that of (1− 2x)−1/2 at x = 1/2), but in fact Ir approximately cancels a
term we have already ignored, namely the one that comes from [−se−s2

logr s]
√

g′
1 in Eqn (A.18), i.e.

−
√

g′e−g′(l′/2)r. The two combine to make a series whose rth term goes as cr/2r(r−1), which is con-
vergent (∑∞

r=2 cr/2r(r−1) = 1/2+ log2). In fact, the sum of this series beyond r = [g′] is approximately
(2/
√

π)e−g′ , which is negligible (‘subdominant’) compared to any inverse power of l′.

On the other hand, if r� g′, the integrand of Ir peaks below s =
√

g′, and Laplace’s method shows
that the difference between Ir(∞) and Ir(g′), namely r

∫
∞√

g′ e
−s2

logr−1 s ds, is ∼ r(l′/2)r−1e−g′/2
√

g′ as
g′→ ∞. This subdominant difference means that we may replace Ir(g′) by Ir(∞) in the early terms of
Eqn (A.19). These l′-independent coefficients can therefore be calculated (numerically) once and for
all. The first ten are recorded in Table A.1. They get smaller at first, as the decreasing contribution
from

∫ e
1 logr−1 s exp(−s2) ds outweighs the increasing contribution from

∫
∞

e logr−1 s exp(−s2) ds, but the
former tends to zero as r increases, and eventually, beyond r = 13, the latter dominates and Ir(∞)
starts to increase.

This large l′ analysis breaks down if l′ . 2, for then the Ir(g′) start off smaller than Ir(∞) (because
the range of integration is small) and then rapidly decrease with r (because of the (l′/2)r behaviour
noted above). l′ ≈ 2 (i.e. l ≈ 2.7) is therefore a reasonable lower l′-limit for the validity of Eqn (A.19).

Combining Eqns (A.14) and (A.19) we find that

Z(l) = Z1(l)+Z2(l)∼ 2

√
2
l′

{√
π

2l′
− 3

l′2
∞

∑
r=0

(−1)r

r!(2r +1)2 χ

(√
(r +1/2)l′

)
+

∞

∑
r=2

cr

l′r
Ir(∞)

}
as l′→ ∞.

(A.21)

Note that Eqn (A.21) has the correct leading order behaviour for an infinitely thin ‘delta function’
ionosphere, namely

Z(l)∼
√

2π/l′3 as l′→ ∞. (A.22)

The rapidly convergent series of χ functions in Eqn (A.21) is easily handled by direct summation.
Including just the c2I2/l′2 term of the second series gives a result which is within 2% for l > 2.7. One
iteration of Shanks’ transformation/the Aitken δ 2-process (e.g. [4]) increases this accuracy to 2% for
l ≈ 2.6 and considerably better beyond. This provides our final expression for the large l′ behaviour
of Z(l), which is therefore given by

Z(l)∼ 2

√
2
l′

{√
π

2l′
− 3

l′2
∞

∑
r=0

(−1)r

r!(2r +1)2 χ

(√
(r +1/2)l′

)
+

c2I2

l′2
+

c3I3/l′3

1− c3I3/c2I2l′

}
as l′→ ∞. (A.23)
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Z2 expansion coefficients

r cr Ir(∞)

0 1.000000000e+00 3.678794411714423e-01 (= e−1)
1 1.000000000e+00 1.394027926403310e-01 (=

√
π erfc(1)/2)

2 1.500000000e+00 7.176549918809735e-02
3 2.500000000e+00 4.339537686883779e-02
4 4.375000000e+00 2.922698909136269e-02
5 7.875000000e+00 2.133133448858963e-02
6 1.443750000e+01 1.659180176004288e-02
7 2.681250000e+01 1.360037129048910e-02
8 5.027343750e+01 1.165510151376709e-02
9 9.496093750e+01 1.037980864219113e-02

Table A.1: Z2 expansion coefficients. cr = (2r)!/2r(r!)2 and Ir(∞) is given by Eqn (A.20).

Eqn (A.23) is shown in Fig A.1, as is the exact, numerically integrated solution. The first and
second partial sums of Eqn (A.10) are also plotted, which shows the improvements brought about by
summing over χ functions and the use of Shanks’ transformation.

A.3.3 All l′

Given the failings of the large- and small-l′ approximations discussed above, an approximate numer-
ical solution for all l′ is necessary. The following Padé approximation is accurate to within 0.8% for
−10 < l < 30 (except near the zero of Z, where the fractional error is understandably large):

Z(l)≈
√

2πθ
∑

4
i=0 piθ

i

∑
6
i=0 qiθ

i
for all l′, where θ = sinh−1(g/4), p0 =−2,q0 = 1 and p4 = q6, (A.24)

for which the coefficients are given in Table A.2. (This expression is more accurate than the one
described in RSR 17 ([3]), which is only correct to within 2.2%.)

Bending angle Padé coefficients

p0 −2.0000000000e+00 (=−2)
p1 5.2266183047e+00
p2 −3.2114861217e+00
p3 7.7739693050e−01
p4 9.5605233730e−02
q0 1.0000000000e+00 (=1)
q1 9.4886329835e−01
q2 −1.0095779222e+00
q3 2.9851107469e+00
q4 −2.7624085011e+00
q5 1.0987936603e+00
q6 9.5605233730e−02 (= p4)

Table A.2: Padé coefficients in Eqn (A.24)

Eqn (A.24), and its fractional difference from the numerically exact solution, is shown in Fig A.1.
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Bending angle function Z(l)
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Figure A.1: Z(l′) for a Chapman layer, calculated numerically to high precision. Also
shown are some partial sums of Eqn (A.8) (useful as l′ →−∞), Eqn (A.23) and the first
two partial sums of Eqn (A.10) (useful as l′→ ∞). Also shown is the Padé approximation
Eqn (A.24) and its fractional error (useful for all l′).

29



Culverwell: Ionospheric profile sensitivity ROM SAF Report 31

A.4 Slantwise TEC

For a Chapman layer electron density distribution Eqn (A.1), Eqn (4.3) in Sec 4 shows that

P̃(k, l) =
∫

∞

−l

exp−1
2 (u+ e−u)
√

u+ l
du (u = (r− r0)/H; l = (r0−a)/H) (A.25)

= 2
√

g
∫

∞

0
exp−1

2

(
v2 +ge−v2

)
dv (v2 = u+ l) (A.26)

= P(l′), say. (A.27)

Using the same sorts of ideas as in Sec A.3, we find the ‘Pimpernel’ function, P(l′), for a Chapman
layer ionosphere to be given by

P(l′) ∼
√

πg
∞

∑
r=0

(−g/2)r

r!
(r +1/2)−1/2 =

√
πg
(√

2−g/
√

6+ . . .
)

as l′→−∞ (A.28)

∼
√

2π/l′
∞

∑
r=0

(−1/l′)r

r!
Γ(r)(1/2)

Γ(1/2− r)
=
√

2π/l′
(
1− (γ +2log2)/2l′+ . . .

)
as l′→ ∞ (A.29)

≈
√

2πθ
∑

3
i=0 piθ

i

∑
4
i=0 qiθ

i
for all l′, where θ = sinh−1(g/4), p0 = 2,q0 = 1 and p3 = q4. (A.30)

The Padé approximation in Eqn (A.30), using the coefficients given in Table A.3, is better than 1.0%
accurate throughout the range -20 ≤ l ≤ 30.

STEC Padé coefficients

p0 2.0000000000e+00 (=2)
p1 −5.9759953854e−01
p2 9.5873323918e−01
p3 2.2033704905e−03
q0 1.0000000000e+00 (=1)
q1 8.8181359624e−01
q2 2.6315962474e−01
q3 9.6048213046e−01
q4 2.2033704905e−03 (= p3)

Table A.3: Padé coefficients in Eqn (A.30)

The exact, numerically integrated P(l), the first two partial sums in both the large negative and
the large positive l′ expansions, and the Padé approximation and its fractional error, are plotted in
Fig A.2. The general shape of P(l) is clear: a maximum just below the peak of the Chapman layer
(at l = 0), where the ray intercepts a high number of electrons on its path. Below this, the gradually
decreasing path length as the ray meets the ionosphere less and less tangentially, leads to a reduced
STEC. Above it, where the ray skims through the top of the ionosphere, the STEC is also smaller. As
the width of the Chapman layer tends to zero, Eqn (A.29) shows that P(l′) ∼

√
2π/l′, which implies

from Eqn (4.3) that

ST EC ∼ 2r0 nmax
e

√
eH

r0 +a

√
2πH

r0−a−H log2
(A.31)

∼ 2r0

(r2
0−a2)1/2

√
2πeHnmax

e

(
=

2r0

(r2
0−a2)1/2 T EC

)
as H→ 0 (A.32)

which, by construction, is the correct limit, as can be verified by geometrical means.
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STEC function P(l)
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Figure A.2: P(l′) for a Chapman layer, calculated numerically to high precision. Also
shown are the 1- and 2-term approximate expansions as l′ → −∞, Eqn (A.28), and as
l′ → ∞, Eqn (A.29). Also shown are the Padé approximation, Eqn (A.30), and, with its
scale on the top axis, the fractional error on it.
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