The RO Instrument for MetOp-SG Engineering Model Test Results

Anders Carlström, Joel Rasch, Jacob Christensen, Thomas Liljegren RUAG Space, Göteborg, Sweden *ROMSAF-IROWG 2019*

Introduction

- Instrument overview
- Main characteristics
- Open Loop Tracking using 10 Correlators
- RO Engineering Model Results
 - Antennas, LNAs, Receiver Modules
 - End-to-end test results
 - End-to-end simulation results
- Conclusion

Two Instrument Generations

GRAS on MetOp

- 700 occultation measurements per day (GPS L1&L2)
- Altitude coverage: 0 to 85 km
- MetOp-A Launch: Oct 2006
- MetOp-B Launch: Sep 2012
- MetOp-C Launch: Sep 2018
- Design life time: 5 years (+ long term storage)

GRAS-2 : RO on MetOp-SG

- 2500 occultations per day (GPS/Galileo/Beidou/QZSS L1&L5)
- Altitude coverage: 0 to 500 km
- MetOp-SG A1 / A2 / A3 Launch: 2022 / 2030 / 2037
- MetOp-SG B1 / B2 / B3 Launch: 2023 / 2031 / 2038
- Design life time: 7.5 years (+ long term storage)

MetOp-SG RO Main Characteristics

- Galileo, GPS, Compass/BeiDou & QZSS Occultations:
 - Glonass K may replace QZSS in the future
 - Modernized GNSS signals: L1, L5
 - 2500 occs/day per instrument
- Bending angle accuracy <0.5 µrad</p>
- Altitude coverage: 0 to 500 km
- Full open loop tracking with 10 correlators in lower troposphere
- "Frodo" device for DME/TACAN protection

	DME (green)	TACAN (red)
Peak pulse power (W)	1000	3500
Antenna peak gain (dBi)	9.5	9.5
Frequency range (MHz)	962-1213	962-1213
Number of stations	3826	417

RO: From Antenna to Bending Angle

Open Loop Tracking using 10 Correlators

- Model based tracking:
 - On-board algorithms incl. Doppler & Range models
 - Open loop tracking where data from 10 correlators are output (the standard method is to output 1 correlator)
- Algorithm to retrieve the correlation peak from 10 correlators is implemented in ground processing
- Allows for rising signal tracking from the surface
- Advanced tracking: is especially useful to cope with:
 - Large range uncertainty (e.g. ionosphere)
- Signals with narrow autocorrelation function (i.e. GPS L1C, L5, Galileo E1bc, E5a & Beidou B1C, B2a)

RO Engineering Model Results

Together ahead. RUAG

Antenna Gain Pattern Results

	Req.	BB	SN001 (EM)	SN002 (EQM)
GOA gain margin L1	>0 dB	0.56 dB	0.39 dB	0.36 dB
GOA gain margin L5	>0 dB	0.87 dB	0.47 dB	0.43 dB

Together ahead. **RUAG**

_	ow Noise Amplifier (LNA) Results									
			RO IHBB			ROI				
		Req.	EBB01	EBB02	EBB03	SN101	SN102	SN103		
	LNA noise figure L1	<2.0 dB	1.56 dB	1.56 dB	1.60 dB	1.57 dB	1.57 dB	1.60 dB		
	LNA noise figure L5	<2.2 dB	1.98 dB	1.95 dB	1.96 dB	2.01 dB	2.02 dB	1.99 dB		

Together ahead. **RUAG**

GNSS Receiver Module Results

RO EM

	Req.	SN02	SN03	SN05	SN07	SN08	SN09	SN10
Implementation loss L1	<1.3 dB	0.45 dB	0.75 dB	1.20 dB	0.55 dB	1.23 dB	0.25 dB	0.92 dB
Implementation loss L5	<1.7 dB	0.98 dB	1.25 dB	1.65 dB	1.08 dB	1.16 dB	0.82 dB	0.96 dB

RO IHBB

End-to-end Performance Evaluation

RO EM test results and IDS/GPP simulations

- FDAF EQM: Maximum DME/TACAN Interference is applied
- Budget analysis based on specified parameters:
 0.46 urad RMS (35-80 km)
- Analysis based on measured units:

0.36 urad RMS (35-80 km)

• Environmental tests (Vibration , shock, TV, EMC) were successfully performed. No performance degradation

Conclusion

- MetOp-SG RO instrument Engineering Model testing is successfully completed
- Excellent performance of all tested units: antennas, LNAs, receiver modules
- End-to-end test demonstrates a bending angle accuracy of 0.4 urad RMS (at 35-80 km)
- PFM manufacturing is ongoing
- 6 flight-models to produce

