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PlanetiQ Goals & Objectives

* Maximize RO impact on state estimation, understanding of processes and
prediction of Weather, Climate & Space Weather

e QUALITY: COSMIC-2 GNSS RO performance via smallsats
* COVERAGE: Full global & diurnal cycle

e QUANTITY: 50,000+ occ/day => 100 km sampling across the globe
every 24 hours

* Flexible design

Can increase sampling density if needed by adding more satellites

My goal: 200,000 occ/day => 100 km sampling every 6 hr NWP cycle for H,0O
vapor & winds
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PlanetiQ Solutions

GNSS RO

e Currently assembling and testing new GNSS RO receivers, designed from
scratch

e Track all 4 GNSS constellations, dual frequency
e Deliver COSMIC-2 performance (>2000 v/v)

= Should enable routine profiling to surface for NWP & climate
e Minimize SWaP to work on smallsats
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Weather and Climate

e Goal is dense, very high vertical resolution, high precision & accuracy
profiling, with all-weather coverage, over any surface, across the globe

* Big predicted impacts on NWP

e “use of radio occultation observations provides information on the
higher-vertical-resolution structure, whereas the radiances provide very
accurate information but only about large-scale features in the vertical. ”
Kwon, English, Bell, Potthast, Collard, and Ruston (2018)

* Will give a talk updating water vapor studies on Monday
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Predicted Reductions in Temperature Analysis Errors

pressure (hPa)

 From Harnisch, Healy, Bauer and English (2013)
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Predicted Reduction of Humidity Analysis Errors
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Quiality — the Super-refraction Challenge PLANETIQ

CRITICAL DATA FOR A SMARTER PLANET

Routine profiling to the surface requires very high SNR
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Quality - Super-refraction Challenge PLANETIQ
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Systematic underestimate of refractivity results
when the standard “Abel” retrieval is used in the
presence of Super-Refraction

Two-part solution (at least):
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assimilation would cause underestimate of
severe weather. Very bad!!

NWP centers give little weight to RO data in
lowermost troposphere to avoid this bias

1. Xie et al., 2006 retrieval method accounts for effects of super-refraction
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2. Need to know when SR is occurring which requires very high SNR.




Quality - Super-refraction Challenge PLANETIQ
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Detecting presence of super-refraction:

Sokolovskiy et al. (2014) showed that reliable occultation signal observations in the
presence of super-refraction requires an SNR of about 2000 v/v
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Planetary Boundary Layer (PBL) sensing

NAS Decadal Survey emphasized better understanding of PBL.

GNSS RO humidity histograms provide very unique and powerful constraints on the hydrological
and energy cycles

To understand exchange between PBL and free troposphere, need histograms both above and
inside PBL

Requires unbiased, complete sampling inside the PBL, which | hope the 2000 v/v SNRs will enable
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GNSS Products:

Space Weather ‘
e Slant TEC

e Electron density profiles (EDP)
* Amplitude & Phase Scintillations

Performance:
e Meets COSMIC2 TEC & scintillation specifications
* More accurate N, profiling via denser sampling

PL ANETE@ IROWG September 19, 2019 11



Data Formats

s

e Deliver data in COSMIC-2 formats where applicable
— podTec
— opn@Gns
— BUFR

— Delivered ~2M neutral and ionosphere simulated occultations to
USAF for evaluation.

e Each of these formats has some open questions associated
with them

PLANETI®



Mission Timeline

N

 Mission design
— Most satellites will be in polar orbits for global coverage
+ Some in lower inclinations for denser low latitude coverage
— 550-720 km altitude to profile most of the ionosphere
— Sequence of piggyback launches, then dedicated launches

e First two satellites launch Q1 2020
— 4 satellites by end of 2020
— Add satellites to fill out constellation & coverage by end of 2022
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Evolution of RO Coverage

e COSMIC 6 satellites ~2,000 occ/day
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PlanetiQ Coverage

e Early 2020: 5,000 occ/day = COSMIC 2B
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PlanetiQ Coverage
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PlanetiQ Coverage

e 2022:~50,000 per day
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Sampling density

Occultations  PlanetiQ COSMIC
50,000 1day <= ~1 month
12,500 6 hours <= 6 days

2,000 1 hour <= 1day
500 15 min. <= 6 hours

= ldentify & resolve features as they evolve
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Evolution of RO Coverage

e COSMIC daily coverage => PlanetiQ HOURLY coverage
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Scintillations

2K v. 50K =) Monthly map becomes a daily map

Dymond, RS 2012
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Sporadic E-layers ‘
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T

e First 2-4 satellites downlink data over each pole for an average
latency of 25 minutes

e Subsequent satellites will carry real time sat-sat
communications to deliver data within a few minutes for space

weather

Latency

22
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.

* Hydrometeor sensing via dual linear polarization like PAZ ROHP

Future possibilities

e Surface reflections
e ATOMMS
e Secondary payloads
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NASA Issue

* NASA recently released an RFl about commercial data purchase RFP coming
out to be in place by May 2020.

* Requires at least 3 satellites, independent of data quality, coverage etc.
— PlanetiQ will not have 3 satellites on orbit by May 2020

— PlanetiQ will have 1 or 2 w/ COSMIC-2 quality & global coverage producing 2000-5000
occ/day

— No one at NASA seems to know where the 3 sat requirement came from

— Stated rationale: “As for the definition of a constellation, the current RFl is consistent
with the previous RFl released in 2017. This definition will not be changed. ”

e |OW, we did it this way last time so we’re going to do it this way again. (Not
terribly innovative, in fact anti-innovative)

— Won’t have another call for 12 to 18 months after this one

= |f (NASA-funded) scientists want access to PlanetiQ data in 2020, we will
need NASA to remove the 3 satellite requirement before NASA’s RFP comes
out

PL ANETE@ IROWG September 19, 2019 24



PlanetiQ Summary .

 Implementing new high performance GNSS RO receiver on smallsats
e First launch February 2020 >2,000 occ/day

e 5,000 occ/day by mid-2020 with pole to pole coverage (=COSMIC 2B)
e Increase to 50,000 occ/day by end of 2022, w/ low latency

e >2000 v/v to enable routine profiling through PBL (hopefully)

* N, profiling accuracy increases as sampling density increases

e Can increase sampling density still higher if needed

 Enables monitoring at increasingly finer temporal & spatial scales,
globally.

e Other capabilities can be developed/added as well

Contact: rkursinski@planetiq.com
PLANETIQ ROW Septemberis, 2015 ”
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