

Maynooth University National University of Ireland Maynooth

The potential role of GNSS-RO data in the IPCC AR6 report

Peter Thorne

Talk outline

- Start by highlighting a number of areas where RO measurements might help advance climate knowledge above and beyond long-term monitoring
 - Tropical tropospheric warming behavior
 - UTLS humidity
 - Diurnal cycle aspects
- Go on to consider how these and RO climate work provide potential inputs explicitly to IPCC AR6

Tropical upper tropospheric temperatures

Tropical troposphere dominated by convective adjustment

uncertainty in whether models and observations agree

Important considerations

- Check the constrained behavior amplification rather than comparing absolute trends
- Need for vertically resolved measurements (hard from passive remote sensing)
- Need for sufficient observations (hard from sparse radiosonde network)
- Need for high-quality observations (hard for radiosondes – solar effects)
- Role for GNSS-RO dense sampling, vertically resolved

Maynooth University National University of Ireland Maynooth

UTLS humidity

Water vapour most important high

up

- In the Boundary Layer and lower troposphere the water vapour bands are pretty much saturated everywhere
- In the UTLS absolute WV concentrations are small and the bands are not saturated
- If we care about the TCR and ECS metrics what matters is the UTLS water vapour as this determines the strength of the positive feedback
- We only have sparse and discontinuous frostpoint hygrometer measures
- Passive sensors have very broad averaging kernels

Maynooth University National University of Ireland Maynooth

Diurnal cycle of temperature and humidity

Historical polar orbiter station keeping issues

Ambiguity in MSU/AMSU/ATMS records

- Largest when satellites were drifting rapidly as alias in diurnal effects
- No robust estimate of the diurnal cycle
 - For lowermost channels need estimate of skin surface cycle
 - Most radiosondes at 00 and / or 12Z
 - Reanalyses will suffer from this
 - Climate models are imperfect

IPCC AR6

Process timeline

http://

WG1 contribution can benefit from RO community input

- To be included in the SOD papers must be submitted by 31st December (and chapter authors alerted)
- To be included / retained in the final draft papers must be accepted by 30th Sept 2020
- Data from RO community have been involved in the FOD and will be retained in subsequent drafts

Specific potential inputs

- Chapter 2 global scale changes in key variables (T,q)
- Chapter 3 model evaluation
- Chapter 7 water vapour feedback implications for climate sensitivity
- Chapter 8 Hydrological cycle
- Chapter 11 extreme events analysis?

Summary

Summary

- There remain important questions which require measurements of:
 - High fidelity
 - Vertically resolved
 - Long-term sustained
 - Measuring the diurnal cycle and any changes therein
 - Of temperature and humidity through the troposphere and stratosphere
- And their analysis...!
- To be included in IPCC AR6 publications submission / acceptance deadlines should be adhered to ...

