

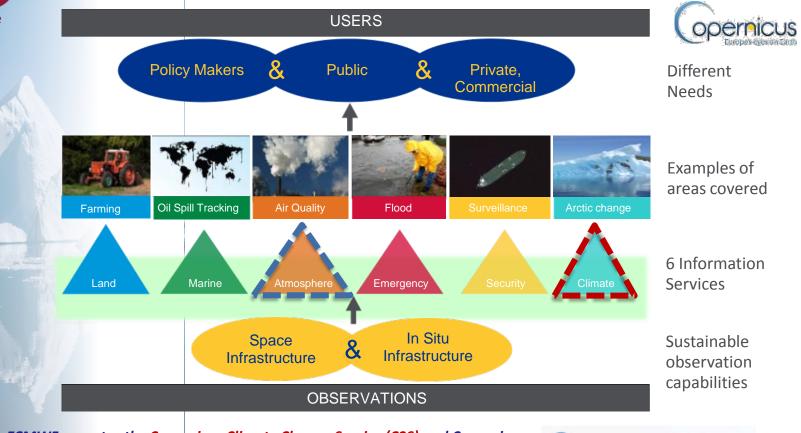
Climate Change

The importance of GNSS Radio Occultation data in the ERA5 global reanalysis

Hans Hersbach,

Bill Bell, Adrian Simmons, Julien Nicolas, Dinand Schepers, Paul Berrisford, Andras Horanyi, Joaquin Munoz-Sabater, Raluca Radu

C3S Reanalysis Team, Copernicus Department, ECMWF


• Copernicus services

- ERA5 configuration and performance
- The usage of GNSS-RO data
- Importance of GNSS-RO data
- Final remarks

The Copernicus Climate Change Service

ECMWF operates the **Copernicus Climate Change Service (C3S)** and Copernicus Atmosphere Monitoring Service (CAMS) on behalf of the European Commission.

- Copernicus services
- ERA5 configuration and performance
- The usage of GNSS-RO data
- Importance of GNSS-RO data
- Final remarks

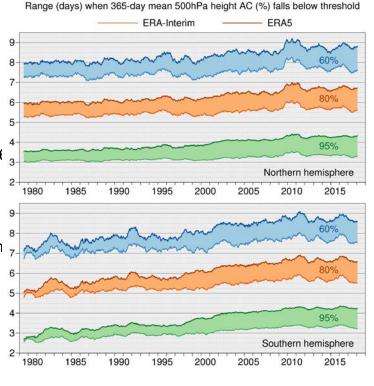
The ERA5 global reanalysis

Change

ERA5 is in production at ECMWF for C3S

Atmosphere, land, ocean waves

ERA5 has replaced ERA-Interim

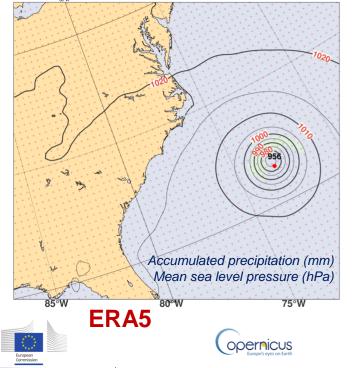

(ERA-I was stopped end August 2019)

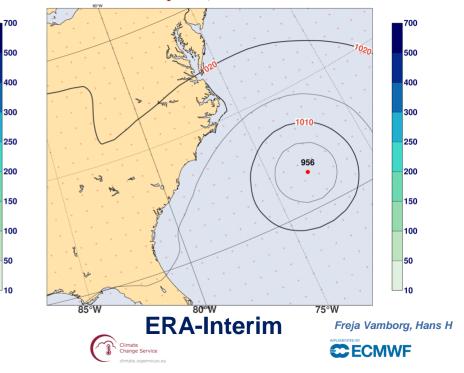
Improvements compared to ERA-Interim:

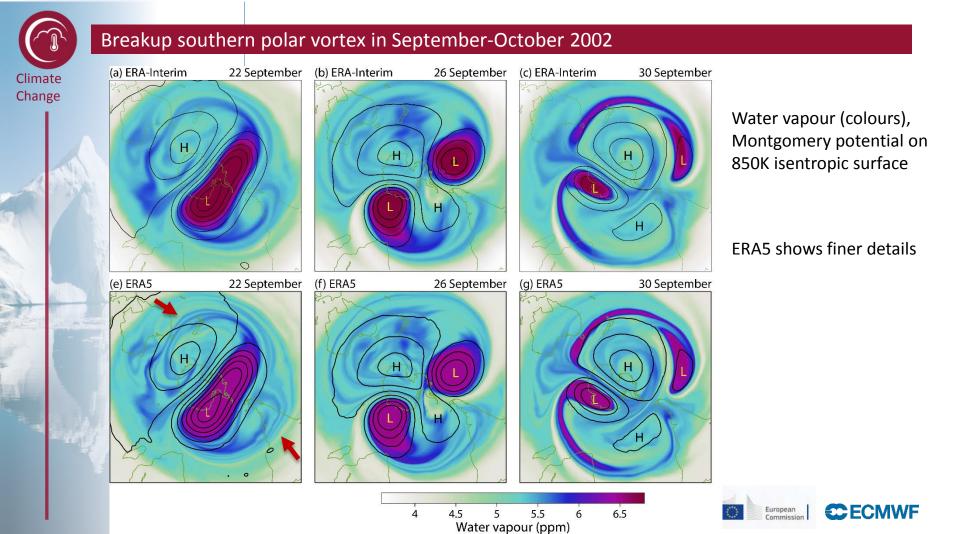
- Benefit from 10 years model development (2006 to 2016
- Much higher resolution; 31km versus 80km
- More and better input data
- Hourly output
- 10-member EDA-based uncertainty estimate (at 63km
 - Perturbations to: SST, model tendencies & obs
- Will reach further back in time (1950 versus 1979)

Climate Data Store public release plan:

- Published to date: Jan 1979– June 2019
- End 2019: updates 2-5 days behind real time: ERA5T
- Q2 2020: 1950-1978.


European


Better model, more and better observations, higher resolution, hourly output



Florence Thu 13 Sep 2018, 01 UTC for ERA5

Florence Thu 13 Sep 2018, 01 UTC for ERA-Interim

- Copernicus services
- ERA5 configuration and performance
- The usage of GNSS-RO data
- Importance of GNSS-RO data
- Final remarks

Change

The ERA5 observing system

0.75 (1979) – 24 Million (2019) obs per day Over 200 types of reports

Reprocessed data sets

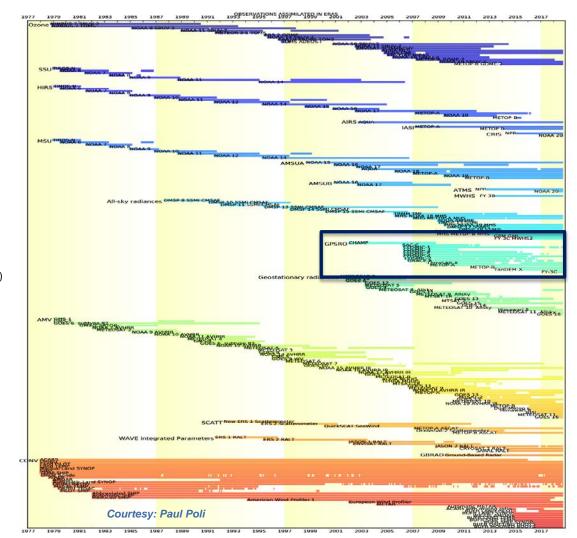
Radiances: SSM/I brightness temp from CM-SAF MSG from EUMETSAT

Atmospheric motion vector winds: METEOSAT, GMS/GOES-9/MTSAT, GOES-8 to 15, AVHRR METOP and NOAA

Scatterometers: ASCAT-A (EUMETSAT), ERS 1/2 soil moisture (ESA)

Radio Occultation: COSMIC, CHAMP, GRACE, SAC-C, TERRASAR-x (UCAR)

Ozone: NIMBUS-7, EP TOMS, ERS-2 GOME, ENVISAT SCIAMACHY, Aura MLS, OMI, MIPAS, SBUV


Wave Height: ERS-1, ERS-2, Envisat, Jason

Latest instruments

IASI, ASCAT, ATMS, CrIS, MWHS, Himawari, ...

Improved data usage

all-sky vs clear-sky assimilation, latest radiative transfer function, corrections, extended variational bias control

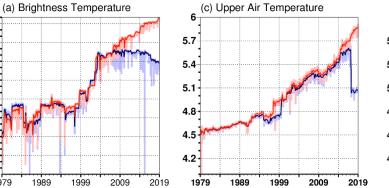
GNSS-RO observations assimilated in ERA5

Reprocessed In reference, but not ERA5 In ERA5, but not referenceUsed in both Reference: ERA-Interim ECMWF NWP GNSS radio occultation bending angles FY-3C GPSRO TanDEM-X GPSRO METOP-B GPSRO METOP-A GPSRO SAC-C GPSRO TerraSAR-X GPSRO COSMIC-6 GPSRO COSMIC-5 GPSRO COSMIC-4 GPSRO COSMIC-3 GPSRO COSMIC-2 GPSRO COSMIC-1 GPSRO GRACE A GPSRO CHAMP GPSRO -015 2019 2005 1001 2027

Reprocessed (from UCAR):

CHAMP, GRACE-A, SAC-C TerraSAR-X, COSMIC 1-6

Operational product: METOP-A and B TanDEM-X FY-3C KompSAT-5 (from end July 2019)



ERA5 data counts

ERA5 data usage has increased from 0.75 (1979) to 24 million/day (2019).

87 Billion observations assimilated (1979 - 2019)

Number of used observations per day (log₁₀ scale) for **ERA5** and **ERA-Interim**

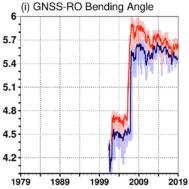
Radiances: Largest volume

1989

7.2

6.9

6.6

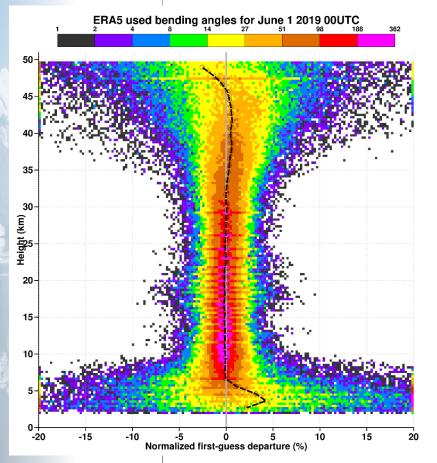

6.3

5.7 5.4

5.1

4.8 1979

Conventional: Radiosondes, aircraft


GNSS-RO:

Initially low numbers Counts ~ conventional Some recent decline

Assimilation of GNSS-RO data in ERA5

Observation operator for bending angle:

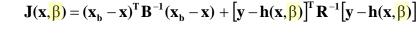
- ✓ 2-Dimensional
- Sensitive to both temperature and humidity
- ✓ Accounts for tangent drift point

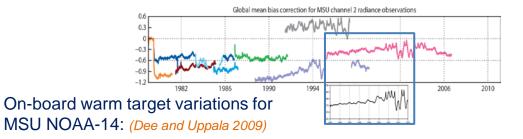
Assimilation:

- ✓ Increased weight compared to ERA-Interim
- ✓ Use between 2-50 km

Anchor measurements

- ✓ Do not bias correct
- Note: radiosonde temperatures are subject to prescribed corrections (e.g., RICH)


The merits of variational bias correction


Change

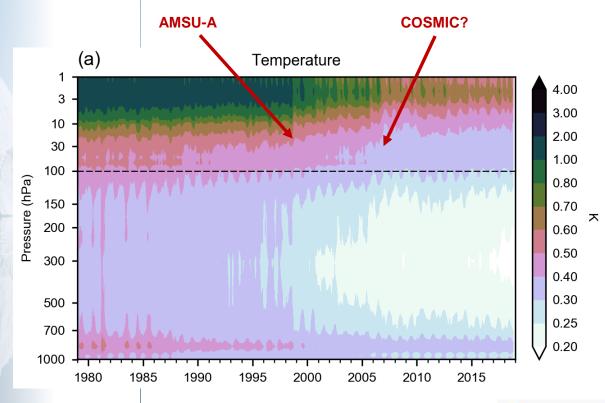
Like ERA-Interim, ERA5 has a dynamic way of estimating biases in the observing system:

- time-evolving biases (both gradual and abrupt) \checkmark
- relative biases between different components \checkmark
- Note: need anchors. **

The bias parameters are included in the variational control:

Resulting bias estimates also provide a path to more homogeneous observational records

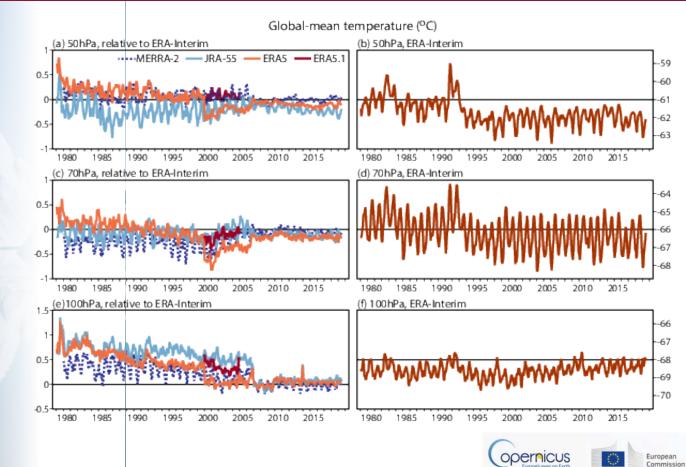
13


- Copernicus services
- ERA5 configuration and performance
- The usage of GNSS-RO data
- Importance of GNSS-RO data
- Final remarks

Ensemble spread as a measure for the synoptic ERA5 uncertainty

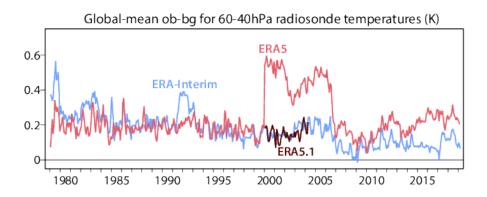
Climate Change

8



Climate

Change

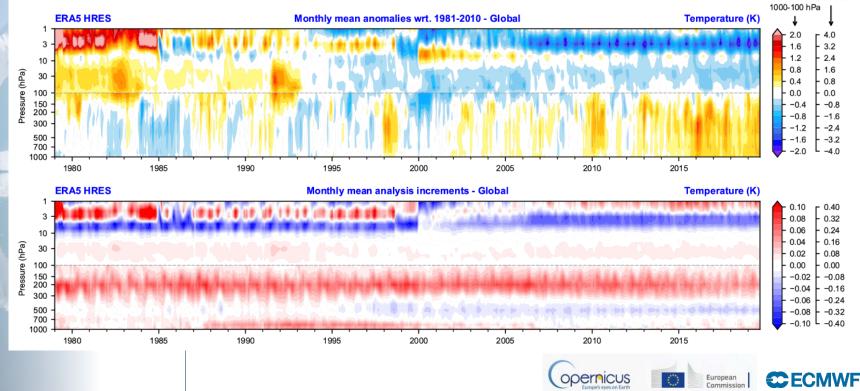


Radiosonde first-guess departure statistics

Between 2000-2006 the ERA5 temperature mean state has a problem in the stratosphere

- ERA5 model is more biased than ERA-Interim
 - Cold in lower stratosphere
 - Warm above 20 hPa
- background-error covariance matrix with shorter correlation lengths
- Weight radiosonde temperatures reduced
- Insufficient RO observations to anchor model bias
 - Bias estimates of satellite data alias model error

Solution:


- Use more appropriate background-error covariance matrix, as from 1979-1999
- **ERA5.1**: to be made available early 2020
- 2000 until advent of COSMIC in 2006

ERA5 anomalies compared to 1981-2010

100-1 hPa

ERA5.1 anomalies compared to 1981-2010

1000-100 hPa ERA5.1 HRES Monthly mean anomalies wrt. 1981-2010 - Global **Temperature (K)** 2.0 - 4.0 - 1.6 - 3.2 - 1.2 2.4 10 - 0.8 - 1.6 Pressure (hPa) 30 - 0.4 0.8 100 - 0.0 0.0 150 200 -0.8 -0.4 -0.8-1.6 300 -2.4 -1.2 500 - -3.2 -1.6 700 -4.0 -2.0 1000 1985 2000 2005 2010 2015 1980 1990 1995 ERA5.1 HRES Monthly mean analysis increments - Global **Temperature (K)** 0.10 г 0.40 - 0.08 0.32 - 0.06 0.24 10 - 0.04 0.16 Pressure (hPa) 30 0.08 - 0.02 100 0.00 0.00 150 -0.08 -0.02 200 -0.04 -0.16 300 -0.06 -0.24 500 -0.08 - -0.32 700 -0.10 L -0.40 1000 1980 1985 1990 1995 2000 2005 2010 2015

opernicus

100-1 hPa

European Commission

- Copernicus services
- ERA5 configuration and performance
- The usage of GNSS-RO data
- Importance of GNSS-RO data
- Final remarks

More information

The ERA5 Global Reanalysis

Hans Hersbach^{1*}, Bill Bell¹, Paul Berrisford¹, Shoji Hirahara², András Horányi¹, Joaquín Muñoz-Sabater¹, Julien Nicolas¹, Carole Peubey¹, Raluca Radu¹, Dinand Schepers¹, Adrian Simmons¹, Cornel Soci¹, Saleh Abdalla¹, Xavier Abellan¹, Gianpaolo Balsamo¹, Peter Bechtold¹, Gionata Biavati¹, Jean Bidlot¹, Massimo Bonavita¹, Giovanna De Chiara¹, Per Dahlgren³, Dick Dee¹, Michail Diamantakis¹, Rossana Dragani¹, Johannes Flemming¹, Richard Forbes¹, Manuel Fuentes¹, Alan Geer¹, Leo Haimberger⁴, Sean Healy¹, Robin J. Hogan¹, Elías Hólm¹, Marta Janisková¹, Sarah Keeley¹, Patrick Laloyaux¹, Philippe Lopez¹, Gabor Radnoti¹, Patricia de Rosnay¹, Iryna Rozum¹, Freja Vamborg¹, Sebastien Villaume¹, Jean-Noël Thépaut¹

¹ European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
² Japan Meteorological Agency, Tokyo, Japan
³ The Norwegian Meteorological Institute, Oslo, Norway
⁴ Department of Meteorology and Geophysics, Universität Wien, Vienna, Austria

*Correspondence to: Hans Hersbach, ECMWF, Shinfield Park, Reading RG2 9AX, UK. E-mail: hans.hersbach@ecmwf.int

- Submitted September 2019 to QJRMS
- In the meantime, see: Hersbach *et al* 2018, *Operational global reanalysis: progress, future directions and synergies with NWP* (from https://www.ecmwf.int/en/publications/)
- For ERA5 data from the C3S Climate Data store: <u>https://cds.climate.copernicus.eu</u>

Final remarks and outlook

ERA5 is available from 1979 and has replaced ERA-Interim.

- Produced at ECMWF by C3S
- Much higher resolution, better model, better and more observations
- The ensemble provides information on the evolving confidence of its products
- 1950-1978 to come, as well as ERA5.1

Although ERA5 uses VarBC, anchor observations are essential

- To guarantee the temporal consistency of the reanalysis mean state ٠
- To avoid the aliasing of model bias into satellite observation bias estimates

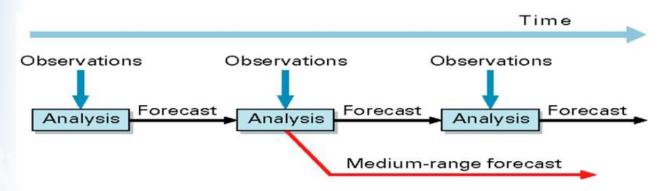
Sufficient amounts of GNSS-RO observations from 2006 onwards are important

- To estimate the large-scale model bias, by using e.g., weak-constraint 4D-Var (Patrick Laloyaux, Monday 23 Sept.)
- which may be mapped back in time as forcing term to also improve the mean state before 2006

Future C3S reanalysis will build on better observations and models:

- satellite reprocessing (EUMETSAT), data rescue, consolidation of historical datasets
- DMI, Orsted occultations (1999)

Back-up slides

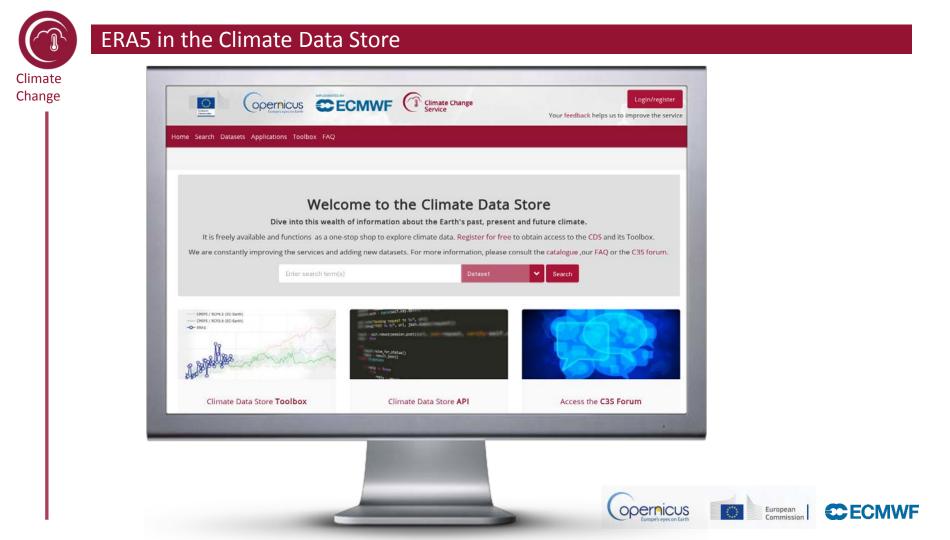

What is new in ERA5?

1

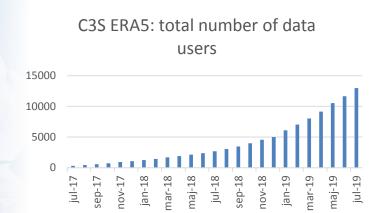
ERA5	ERA-Interim	
1950 – present, produced in 2 phases	1979 – present	Period
product) T)	2-3 months	Availability behind real time
41r2), 4D-Var, hybrid EDA providing B	2006 (31r2), 4D-Var	Assimilation system
<i>Appropriate for climate</i> , e.g., eenhouse gases, volcanic eruptions, sea surface temperature and sea ice	As in operations, (inconsistent SST and sea ice)	<i>Model input (radiation and surface)</i>
31 km globally 137 levels to 1 Pa	79 km globally 60 levels to 10 Pa	Spatial resolution
from 10-member EDA at 62 km		Uncertainty estimate
<i>Hourly</i> (three-hourly for the ensemble), Extended list of parameters ~ 9 Peta Byte (1950 - timely updates)	6-hourly Analysis fields	Output frequency
reprocessed CDRs, latest instruments	Mostly ERA-40, GTS	Extra Observations
Also ozone, aircraft, surface pressure, RISE	Satellite radiances, RAOBCORE	Variational Bias control radiosondes
ERA5L, 9km (forced by ERA5)	ERA-Interim land, 79km	Land downscaling product

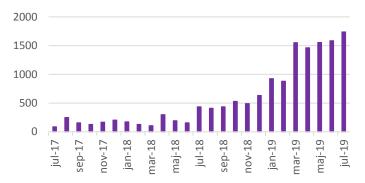
Numerical Weather Prediction and Climate Reanalysis

Climate Change



- NWP is primarily concerned with **prediction** (the Medium Range Forecast)
 - NWP models are upgraded every 6-12 months
 - Observations lose (most of their) value after ~0.5 day
 - Reanalysis is concerned with the **retrospective analysis** of the atmosphere, in a **consistent** way, over **many decades**
 - Uses state-of-the-art NWP systems (but using a fixed configuration over decades)
 - Observations (esp. reprocessed/ recalibrated) continue to have value
 - Reanalyses updated every 5-10 years (ERA5 is the 5th generation ECMWF reanalysis)





ERA5 user uptake

C3S ERA5 downloads (TB)

