

Quantifying the Tropical Upper Troposphere Lapse Rate Feedback Using Radio Occultations

Panagiotis Vergados¹

Chi O. Ao¹ and Anthony J. Mannucci¹

¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Joint 6th ROM SAF User Workshop & IROWG-7 Workshop

Konventum, Helsingør (Elsinore), Denmark, September 19-25, 2019

Copyright 2019. California Institute of Technology. Government sponsorship acknowledged

Table of Contents

Objectives(3)
Introduction(4)
Methodology(6)
Results
Conclusions(13)

1. Understand how ROs could complement climate research?

2. What new physics information could we get from GNSS signals?

CLIMATE FEEDBACK DEFINITION:

The climate feedback for a variable, λ_x , can be expressed as the product of two terms [e.g., *Soden et al.*, 2008]:

$$\lambda_{x} = \left(\frac{\partial R_{x}}{\partial X}\right) \cdot \left(\frac{dX}{d\overline{T}_{s}}\right)$$

A) One of the radiative transfer

B) One of the climate response

Where *R* is the net top of the atmosphere (TOA) flux; *X* is a climate variable (e.g., T, q, A, C); and T_s is the surface temperature.

Introduction (Climate Feedbacks)

RO-BASED WATER VAPOR FEEDBACK [Vergados et al., 2016]

$$\frac{dq}{dT_{s}} = 621.9907 \cdot \frac{P}{\left(P - e^{2}\right)^{2}} \cdot \frac{T^{2}}{b} \cdot \left[\frac{dN}{dT_{s}} + \frac{1}{T} \cdot \left(2N - \frac{aP}{T}\right) \cdot \frac{dT}{dT_{s}}\right]$$

q is the specific humidity, N is the refractivity, T is the atmospheric temperature, T_s is the surface temperature, e is the partial pressure of water vapor, and a and b are constant values.

COMPONENTS OF SOFTWARE DATA METHODOLOGY **ANALYSIS** Data Analysis **Retrieve** • JPL, GPS-RO Monthly zonal means • Compare GPS-RO ٠ **ERA-Interim** • 9–year long time series • series with ERA-Aqua/AIRS v6.0 Interannual anomalies Interim, AIRS, and • MERRA v2.0 300 - 200 hPaMERRA data sets. ٠ • Assess linear trends, seasonal variabilities, their anomalies, and quantify dT/dSST. Set Up **Statistics** • Assess the GPS-RO Mean climatologies • 01/2007-12/2015 performance on short-Difference & Std. Dev. • 30°S-30°N term temperature time Monthly variabilities Research and series. Seasonal/Annual Trend • Tropical Zones Applications

ERA-Interim European Center for Medium-Range Weather Forecasts **Re-Analysis** Interim

Aqua/AIRS

Atmospheric **Infrared Sounder**

MERRA Modern-Era Retrospective Analysis for

Results (1/6) (\pm 30°, 300 hPa)

09/20/2019

UT Lapse Rate Feedback

ROM/SAF – IROWG-7 Workshop, 2019

7

Results (2/6) (± 30°, 300 hPa)

09/20/2019

UT Lapse Rate Feedback

Results (3/6) (± 30°, 200 hPa)

09/20/2019

UT Lapse Rate Feedback

Results (4/6) (± 30°, 200 hPa)

09/20/2019

Subtropics – Dry atmosphere

UT Lapse Rate Feedback

Results (6/6)

Climate Response of the Tropical Lapse Rate Feedback

The majority of the climate models show dT/dSST at 250 hPa to have a wide range of values, fluctuating between 1.5 K/K and 2.5 K/K [*Minschwaner et al.,* 2006]

- 1. All data sets, within their error uncertainty, agree on the temperature variability.
- 2. The variability captured in the inter-annual anomalies of all data sets are the same.
- 3. At 200 hPa, all data sets show the same dT/dSST response to surface warming.
- 4. At 300 hPa, all data sets agree with one another except from GPS/RO showing 30% weaker signal.
- 5. All data sets fall within the model range (gray area) and are systematically smaller than the multi-model mean.