

Climatological temperature trends from Radio Occultation and Radiosondes

Florian Ladstädter, Andrea K. Steiner, Hallgeir Wilhelmsen, Maximilian Gorfer, Matthias Stocker

> Wegener Center and IGAM/Institute of Physics, University of Graz, Austria florian.ladstaedter@uni-graz.at

- Can we determine vertically resolved, robust trends from Radio Occultation?
- And how does it compare to high-quality radiosondes and reanalysis?

Distribution of events/sampling

RO filling the observational distribution gaps

F. Ladstädter

Temperature variability-seasonality

Temperature variability-seasonality removed

70°N to 90°N

Estimate sampling bias using e.g. ERA5 (interpolated to observations minus full field)

Tropics

30°N to 70°N

RO has small, but time-dependent sampling bias

RS struggling with catching the atmospheric variability, especially at high latitudes

Trends of absolute temperature

Trends of temperature anomalies

Trends of temp anomalies, sampling corrected

Multiple linear regression

"**Conventional**" indices: Singapore winds, ENSO34 index, solar flux

Solar Standardized Index

Standardized Index

Standardized Index

0

2004

Sep 20, 2019

0

ENSO Standardized Index

PCA

QBO

2

0

-20.0 to 20.0

How much of the total variability do the indices resolve?

How much of the total variability do the indices resolve?

How much of the total variability do the indices resolve?

Temperature trends, multiple linear regression

Robust trends, but: With height-resolved indices, also stratospheric trends become statistically significant (95%)

Sep 20, 2019

F. Ladstädter

conventional indices

What is the advantage of the height-resolved indices? Here, e.g., tropics:

RO 09/2001 - 12/2018 -20.0° to 20.0° 30 25 25 20 20 altitude (km) 51 altitude (km) 10 10 ENS034 variance PC2 variance OBO PC1 variance PC1 variance QBO PC2 variance Trend Residual variance Trend Residual variance 95% conf. interva Total variance 95% conf. interval Total variance -0.50.0 0.5 1.0 15 0.0 0.5 10 1.5 2.0 -1.0-0.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 -1.0temperature trend (K/decade) temperature variance (K²) temperature trend (K/decade) temperature variance (K²) explained variance explained variance trend with 95% conf.int. trend with 95% conf.int.

height-resolved indices

Reason for differences RO-RS in tropopause region could be switch from RS80 to RS92

ERA5.1 much improved between 2000 and 2006, compared to original ERA5.

ERA5.1 much improved between 2000 and 2006, compared to original ERA5.

Conclusions: Trends 2001-09 to 2018-12

ERA5.1

RO

RS

Conclusions:

- Careful consideration of variability versus trend signal needed for climate trend detection over short time period.
- RO and RS trends overall consistent, differences to be resolved remain.

F. Ladstädter