

WG EUMETSAT ROM SAF - IROWG 2019

3D geolocation of ionospheric plasma irregularities by combination of RO, in situ, and ground-based GNSS measurements

U N I W E R S Y T E T WARMIŃSKO-MAZURSKI W OLSZTYNIE Iurii Cherniak Sergey Sokolovskiy William Schreiner UCAR COSMIC Program Office

Irina Zakharenkova SRRC UWM

Ionospheric plasma irregularities. Global distribution

Occurrence of L band scintillation during high and low solar activity

Spartial structure of ionospheric plasma irregularities

Mutiinstrumental approach to specify 3d structure of ionospheric plasma irregularities

Challenge - source of irregularities / scintillations location and size estimation by single instrument

Using multiply instruments to detect plasma irregularities in 3D

4

Ionospheric irregularities signatures in GNSS measurements

lonospheric irregularities can be characterized by measuring its impact on amplitude and phase of the received GPS signal.

Pi et al. [GRL, 1997] introduced into the use two GPS-based indices:

• **ROT** (Rate of TEC change, dTEC/dt) as a measure of GPS signal phase fluctuations

$$ROT = \frac{sTEC_k^i - sTEC_{k-1}^i}{t_k - t_{k-1}}$$

• **ROTI** (Rate of TEC Index, standard deviation of ROT) characterizes the severity of the GPS phase fluctuations

$$ROTI = \sqrt{\left\langle ROT^2 \right\rangle - \left\langle ROT \right\rangle^2}$$

Image credit: GPS World

GNSS as global observational network for ionosphere monitoring

Ionospheric plasma irregularities location. SED-TOI structures ROTI vs TEC maps

Ground based GNSS observations

2015 St. Patrick's Day storm

07 UT –180° ISO. ROTI .06 6 ROTI <u>–180°</u> 17 UT 150 0 0.8 0.6 。 06 60 4.0 0.2 0° TECU/min ROTI –180° 22 UT 150 。 06 6 20 *S* U,

Cherniak et al, Space Weather, 2015

Ionospheric plasma irregularities location. SED/TOI signatures in the COSMIC RO

COO6.2015.076.15.02.G16

Superimposing to the TEC/ROTI maps vs LEO GPS and in-situ observations

Formation of the T SED/TOI topside structures over Southern hemisphere, March, 2015 geomagnetic storm.

Ionospheric plasma irregularities location. SED/TOI signatures in the COSMIC RO

Superimposing to the TEC/ROTI maps vs LEO GPS and in-situ observations

COO1.2015.354.20.31.G25 90 700 60 600 30 500 400 0 300 -30 200 -60 100 -90 -180 -120 60 120 -60 180 -500000 500000 1000000 Ο Ω **GNSS ROTI GNSS TEC** ~193 -120° -120° 00 8 ŝ 30 150° 60° 60 TEC ROTI TECU TECU/min 10 0.5 _1.0 ..0.0 0 5 15

Formation of the SED/TOI topside structures over Northern hemisphere, December, 2015 geomagnetic storm.

June 2015 geomagnetic storm

High-latitude ionospheric irregularities location vs Space Weather drivers

Ground-based ROTI.

23/06/2015 0000 UT

¹² The June 2015 geomagnetic storm

The June 2015 geomagnetic storm Plasma bubbles on midlatitudes

GPS ROTI

a) Swarm A

(2) 19.2-19.8 UT (1) 14.8-15.4 UT

-20

30

20

0-

-10--20-

-30

-40

-50

10/ 103 101 10/ 10% 103 10 105 10/ 107 10 F17

(3) 21.5-22.0 UT (2) 19.9-20.4 UT (1) 18.4-18.9 UT

In situ electron density (H= ~465 km)

(4) 23.0-23.5 UT

(5) 0.6-1.1 UT

Swarm and C/NOFS in situ

The June 2015 geomagnetic storm

COSMIC RO vs in situ DMSP

Ionospheric plasma irregularities location by back propagation approach

COSMIC RO S4

Measurements technique	Area of application
GNSS RO	Altitudinal distribution
RO BP	Distance from receiver, altitudinal distribution
GNSS POD	Location above satellite orbit
Ground based GNSS	Geographical location
In situ LP/IVM	Location along satellite orbit

Summary

- Combination of different ground-based and space-borne observations can allow to assess plasma irregularities parameters in geographical and altitudinal domain.
- Independent multi-instrumental measurements provide a consistent global view on the ionospheric density irregularity distribution and dynamics and allow estimating space weather drivers for plasma irregularities generation.
- Results confirm a high potency of the COSMIC-2 mission for ionospheric irregularities monitoring as it's equipped by both in situ plasma probes and GNSS remote sensing payload, including RO and POD instruments.

Thank you!