Calibration and Validation of the Polarimetric ROHP - PAZ experiment and potential scientific applications

Ramon Padullés^{1*}, F. Joe Turk¹, Chi O. Ao¹, M. de la Torre¹, Kuo-Nung Wang¹, Byron lijima¹, Estel Cardellach²

¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
* NASA Postdoctoral Program (NPP) fellow, USRA
² Institut de Ciències de l'Espai, ICE, CSIC, IEEC, Barcelona

Jet Propulsion Laboratory California Institute of Technology

Outline

1. Calibration of the ROHP PAZ experiment data

2. Validation with GPM products

3. Vertical structure of precipitation

Status processing at JPL

Total number of processed Polarimetric ROs [up to 2019 – 09 – 07]

day of the year

Total number of processed profiles: Total gone through QC: Precipitation information (surface):

90,864 71,302 49,315

Status processing at JPL

Total number of processed Polarimetric ROs [up to 2019 – 09 – 07]

Calibration strategy

- A metallic structure was introduced to adapt the satellite to the launch vehicle. Partially blocks the antenna & introduces multipath
- On-orbit calibration required: accumulation of free of rain observations to build an antenna pattern
- Precipitation information (surface rain rate and brightness temperature) from the GPM (Global Precipitation Mission) IMERG products: global +-60deg latitude, every 30 min, high spatial resolution, products from MW and IR precip retrievals

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review

Signal to Noise pattern

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review

IROWG 2019 - New Techniques

Differential phase shift pattern

Antenna pattern created using observations with no rain

The rest of the data is corrected using this antenna pattern

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review

IROWG 2019 - New Techniques

Using the antenna pattern to correct the measurements

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review

Calibrated differential phase shift

- Calibration using on orbit antenna patterns offer good results:
 - No biases
 - Standard deviation comparable to previous sensitivity studies
 - Data within precipitation regions exhibit a large positive signature well above $\sigma_{\rm no\ rain}$
- The stronger the rain, the larger the signature
- Bump around 7-8 km: closed loop -> open loop transition? [under investigation]

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review

Validation with GPM products

Sensitivity to precipitation intensity

Each observation is linked to a measure of $\Delta \phi$

Vertical structure of $\Delta \phi$: geographical distribution of the top percentile

Jun Jul Aug

Dec Jan Feb

Background: accumulated precipitation from GPM for the same months

- Agreement of <Δφ> with precipitation climatologies
- Agreement with vertical structures:
 - Sensitivity above 10 km only in deep convective regions
- Strong precipitiation in the lower layers not restricted to tropics

Investigation of the vertical structure

Colocations with GPM core radar

Colocations with GPM core radar

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

Pseudo-colocations: we look for the most similar PAZ profile based on:

- Temperature profile
- Specific humidity profile
- Brightness temperature
- Column water vapor

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

- Drop Size Distribution *N(D)* from TRMM and Csat retrievals
- Temperature profile from ECMWF
- Water drops: T-Matrix method
- Ice particles simulations: forward scattering simulations using Discrete Dipole Approximation method

- Orientation of ice particles?
 - Two different vertical profiles of % of oriented particles

Gray shade

2019 - 09 - 23

IROWG 2019 – New Techniques

- Drop Size Distri
- Temperature pre
- Water drops: T-
- Ice particles sin using Discrete [

Examples of realistic ice particles used in the simulations

JDSAT

ticles? ertical profiles d particles top of cloud to freezing level • 0 -> 25 % • 0 -> 75 % Gray shade

2019 - 09 - 23

16 **jpl.nasa.gov**

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

- Drop Size Distribution *N(D)* from TRMM and Csat retrievals
- Temperature profile from ECMWF
- Water drops: T-Matrix method
- Ice particles simulations: forward scattering simulations using Discrete Dipole Approximation method

- Orientation of ice particles?
 - Two different vertical profiles of % of oriented particles

Gray shade

2019 - 09 - 23

IROWG 2019 – New Techniques

Vertical structure of precipitation: Observations at different times

- Observation of the same event, although with significant time difference
- Simulations including ice can explain the observed signal (with caution), at least qualitatively
- Demonstration that ice particles are inducing a significant contribution to <Δφ>

Conclusions

- PAZ has been in orbit for more than one year already. It has provided more than 90,000 polarimetric RO
- On-orbit calibration has been proven useful to correct for biases and artifacts in $\Delta \phi$
- The dispersion in $\Delta \phi$ agrees with previous sensitivity studies
- $\Delta \phi$ shows sensitivity to precipitation intensity and agrees well with rain climatologies
- The vertical structure of $\Delta \phi$ correlates with deep convective events, showing the ability to sense whole vertical precipitating structures
- Realistic simulations of ice particles show that $\Delta \phi$ is also sensitive to ice

