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1. Calibration of the ROHP PAZ experiment data

2. Validation with GPM products

3. Vertical structure of precipitation
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Status processing at JPL
Total number of processed Polarimetric ROs [up to 2019 – 09 – 07 ] 

Total number of processed profiles: 90,864

Total gone through QC: 71,302

Precipitation information (surface): 49,315

1 year
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Status processing at JPL
Total number of processed Polarimetric ROs [up to 2019 – 09 – 07 ] 
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Calibration of ROHP PAZ data
Calibration strategy

• A metallic structure was introduced to adapt the satellite to the launch 
vehicle. Partially blocks the antenna  & introduces multipath

• On-orbit calibration required: accumulation of free of rain observations 
to build an antenna pattern 

• Precipitation information (surface rain rate and brightness temperature) 
from the GPM (Global Precipitation Mission) IMERG products: global   
+-60deg latitude, every 30 min, high spatial resolution, products from 
MW and IR precip retrievals

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review
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Calibration of ROHP PAZ data
Signal to Noise pattern
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Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review
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Calibration of ROHP PAZ data
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Differential phase shift pattern

ΔϕH-V

Antenna pattern created using observations with 
no rain

The rest of the data is corrected using this antenna 
pattern 

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review
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Calibration of ROHP PAZ data
Using the antenna pattern to correct the measurements

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review
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Calibration of ROHP PAZ data
Calibrated differential phase shift 

• Calibration using on orbit antenna patterns offer good
results:

• No biases
• Standard deviation comparable to previous

sensitivity studies
• Data within precipitation regions exhibit a large

positive signature well above !no rain

• The stronger the rain, the larger the signature
• Bump around 7-8 km: closed loop -> open loop

transition? [under investigation]

Padullés et. al, 2019, doi.org/10.5194/amt-2019-237, in review
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Validation with GPM products
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Validation of ROHP PAZ data

<Δϕ> 0-10 km

Sensitivity to precipitation intensity

Each observation is linked to a measure of Δϕ

<Δϕ> 0-10 km

<Δϕ> 0-5 km

<Δϕ> 5-10 km
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Validation of ROHP PAZ data
Vertical structure of Δϕ: geographical distribution of the top percentile

<Δϕ> 0-5 km

<Δϕ> 5-10 km

<Δϕ> 10-15 km
• Agreement of <Δϕ> with precipitation

climatologies
• Agreement with vertical structures:

• Sensitivity above 10 km only in 
deep convective regions

• Strong precipitiation in the lower layers
not restricted to tropics

Jun Jul Aug

Dec Jan Feb

Background: accumulated precipitation from GPM for the same months
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Investigation of the vertical structure
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Validation of ROHP PAZ data
Colocations with GPM core radar

GPM core 
swath

PAZ RO 
tangent 
pointPAZ RO rays

precipitation

Brightness 
temperature
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Validation of ROHP PAZ data
Colocations with GPM core radar

We cannot explain this 
signature. Simulations and 
observations do not agree
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Validation of ROHP PAZ data
Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

TRMM 
(13 GHz)
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Validation of ROHP PAZ data
Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

CloudSat
(94 GHz)

TRMM 
(13 GHz)
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Validation of ROHP PAZ data
Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

Pseudo-colocations: we 
look for the most similar 
PAZ profile based on:
• Temperature profile

• Specific humidity profile

• Brightness temperature

• Column water vapor

PAZ profile

TRMM – CoudSat retrievals are used to 
simulate the Kdp using forward scattering 

techniques 
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Validation of ROHP PAZ data

PAZ obs
Rain simulation

Ice + rain simulation

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

• Drop Size Distribution N(D) from TRMM and Csat retrievals
• Temperature profile from ECMWF
• Water drops: T-Matrix method
• Ice particles simulations: forward scattering simulations 

using Discrete Dipole Approximation method

• Orientation of ice particles?
• Two different vertical profiles 

of % of oriented particles

From top of cloud to 
freezing level
• 0 -> 25 %
• 0 -> 75 %

Gray shade
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Validation of ROHP PAZ data

PAZ obs
Rain simulation

Ice + rain simulation

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

• Drop Size Distribution N(D) from TRMM and Csat retrievals
• Temperature profile from ECMWF
• Water drops: T-Matrix method
• Ice particles simulations: forward scattering simulations 

using Discrete Dipole Approximation method

• Orientation of ice particles?
• Two different vertical profiles 

of % of oriented particles

From top of cloud to 
freezing level
• 0 -> 25 %
• 0 -> 75 %

Gray shade

Examples of realistic ice particles
used in the simulations
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Validation of ROHP PAZ data

PAZ obs
Rain simulation

Ice + rain simulation

Vertical structure of precipitation: colocations between TRMM and CLOUDSAT

• Drop Size Distribution N(D) from TRMM and Csat retrievals
• Temperature profile from ECMWF
• Water drops: T-Matrix method
• Ice particles simulations: forward scattering simulations 

using Discrete Dipole Approximation method

• Orientation of ice particles?
• Two different vertical profiles 

of % of oriented particles

From top of cloud to 
freezing level
• 0 -> 25 %
• 0 -> 75 %

Gray shade
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Validation of ROHP PAZ data
Vertical structure of precipitation: Observations at different times

Δϕ (mm) Δϕ (mm) Δϕ (mm)

H
ei

gh
t(

km
)

Paz: 2018-08-04 08:19 GPM: 2018-08-04 02:00 csat: 2018-08-05 03:37

• Observation of the same event, although 
with significant time difference

• Simulations including ice can explain the 
observed signal (with caution), at least 
qualitatively

• Demonstration that ice particles are 
inducing a significant contribution to <Δϕ>
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Conclusions

• PAZ has been in orbit for more than one year already. It has provided more than

90,000 polarimetric RO

• On-orbit calibration has been proven useful to correct for biases and artifacts in Δϕ

• The dispersion in Δϕ agrees with previous sensitivity studies

• Δϕ shows sensitivity to precipitation intensity and agrees well with rain climatologies

• The vertical structure of Δϕ correlates with deep convective events, showing the

ability to sense whole vertical precipitating structures

• Realistic simulations of ice particles show that Δϕ is also sensitive to ice
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