

Introduction of Climate and Atmospheric Composition Exploring Satellites (CACES) Mission

Liu Congliang (1,3), Sun Yueqiang (1,3), Bai Weihua, Du Qifei (1,3), Gottfried Kirchengast (2,3), Veronika Proschek (2,3)

 (1) National Space Science Center (NSSC), Chinese Academy of Sciences, Beijing, China
 (2) Wegener Center for Climate and Global Change (WEGC), University of Graz, Graz, Austria
 (3) JOAC–Joint Laboratory on Occultations for Atmosphere and Climate by NSSC and University of Graz

Thanks to all further colleagues at LSEE (RO Group) and IAP, CAS (CACES group) valuable discussions and advice!

Outlines

Radio occultation group, NSSC

NSSC

>Research domains:

- GNSS radio occultation (GNSS RO)
- GNSS reflectometry (GNSS-R)
- LEO-LEO microwave occultation (LMO)
- ➢ Research Goals:
- To develop occultation and GNSS-R instruments
- To apply the GNSS remote sensing data
- **Research** partners:
- China Meteorological Administration (CMA)
- Institute of Atmosphere Physics (IAP), CAS
- Wegener Center for Climate and Global Change (WEGC)
- Geo Forschungs Zentrum (GFZ)
- DMI, EUMETSAT ROM SAF
- Institut d'Estudis Espacials de Catalunya (IEEC)

ISSI BJ Forum Group photo

Prof Kirchengast and IAP colleagues

GNSS RS Group and Prof Gottfried Kirchengast

Instrument products

FY-3E GNOS II

GNSS RO Receivers

GNSS Reflection Receivers

FPGA+DSP GPS/BDS/GALILEO compatible ocean reflection receiver

FY-3C/-3D GPS/BDS

compatible

flight models

FY-3C GNOS

LMO research fields: • Satellite-to-Satellite occultation for Mars • LEO-LEO occultati on for Earth

LMO Transmitters and Receivers

YH-1 RO receiver flight model for Mars

LMO transmitter receiver for Earth

YingHuo-1 mission

One of the major scientific objectives of YH-1 mission is to investigate the ionosphere of the Mars by using Sat-Sat occultation. (The 2 frequencies signals are ~415.5 and ~833 MHz.)

- The indoor testing of the Tx and Rx showed that both of them were working well.
- However, they were not successfully launched into the Martian orbit in 2011
- And this is the start point of RO research group in NSSC.

Operational and future missions

FY-3E GNOS II plan to be launched in 2020

>The following FY-3 satellites will carry GNOS II as a key payload...

From GRO to LEO-LEO occultation

Retrieval processing of GRO, LMO and LIO (LMIO) :

[V. Proschek, G. Kirchengast, and S. Schweitzer, AMT, 4, 2035–2058, 2011]

GRO has been established by various missions (COSMIC, MetOP, FY-3 GNOS...) Widely used for NWP, climate monitoring and space weather.

- **Temperature-humidity ambiguity,** which means the temperature and humidity in the troposphere can only be retrieved separately from refractivity by co-using a priori humidity or temperature information
- GRO cannot realize the atmosphere GHGs monitoring

LMO principle

Bending angle

The complex refractive index is given by:

$$n = n' + i \cdot n''$$

The optical path is given by:

 $L = \int_{T_x}^{R_x} n' ds \xrightarrow{\text{Excess phase}}$

Abel transform to refractivity real part:

•
$$n'(a) = \exp\left[\frac{1}{\pi}\int_a^\infty \frac{\alpha(a')}{\sqrt{a'^2 - a^2}}da'\right]$$

The optical depth is given by:

Abel transform to absorption coefficient :

$$\tau = \int_{T_x}^{R_x} k ds \xrightarrow{\text{Amplitude}} \Delta k(a) = -\frac{1}{\pi} \frac{da}{dr} \int_a^\infty \frac{d\Delta \tau / dx}{\sqrt{x^2 - a^2}} dx$$

Constraining the atmosphere to be in hydrostatic balance to obtain a set of equations:

$$\Delta k = F_1(p, T, p_w)$$

$$n' = F_2(p, T, p_w)$$

$$dp/dz = F_2(p, T, p_w)$$

LMIO principle

The optical depth is given by: $\tau = \int_{T_x}^{R_x} k ds \xrightarrow{\text{Amplitude}} k(z_j) = \frac{1}{\pi} \frac{da}{dr} \Big|_{a=a_j} \int_{a_i}^{a_{top}} \frac{d \ln T(a)}{da} \frac{1}{\sqrt{a^2 - a_j^2}} da$

The Volume Mixing Ratio (VMR in ppmv) profiles for species can retrieved by:

$$\chi(z_i) = 10^6 R \frac{k(z_i)}{\varepsilon(z_i)} \frac{T(z_i)}{p(z_i)}$$

Doppler effected optical depth difference is give by:

$$\Delta \tau = \int_{T_x}^{R_x} \Delta k_0 ds - \frac{1}{c} \int_{T_x}^{R_x} \Delta \chi_0 v_{\parallel} ds$$

Abel transform to wind velocity :

$$v(a) \approx \frac{c}{\Delta \chi_0(a)} \left[\frac{1}{\pi} \frac{d}{dr} \int_a^\infty \frac{\Delta \tau(x) dx}{\sqrt{x^2 - a^2}} + \Delta k_0(a) \right]$$

Climate and Atmospheric Composition Exploring Satellites (CACES) accepted by Strategic Priority Research Program of Chinese Academy of Sciences (SPRPCAS)

- 4 LEO Satellites
- Combining microwave and infrared laser occultation and clouds & water vapor VIR dual-channels imaging
- LMO and LIO limb sounding for vertical profiles of T, P, WV, CO₂, CH₄ (etc.) at high vertical resolution
- CWAVI camera for downlooking multi-angle images over occ. event regions

Scientific objectives of CACES

- To monitor the multiple parameters simultaneously in high accuracy, high vertical resolution, to provide a new understanding of spatial-temporal distribution and variation.
- To know the transport and exchange of atmospheric water vapor, liquid water, maybe including ice crystals, in clouds under strong convections.
- To reveal the physical and chemical processes of different atmospheric composition at the key interface between troposphere and stratosphere, and to study their impacts and feedbacks on global climate change.
- To study the impact of atmospheric composition change on the Earth's ecosystem and the interaction mechanisms

Orbit of CACES

Constellation Design

- Sun synchronous/near polar counter-rotating orbits of Tx and Rx
- 550/500 km
- 2 Satellites/orbit,
 - **4 Satellites in total**

LEO-LEO occultation analysis

Global distribution of the LEO-LEO events for 24/72/144 hours

Parameters of CACES system

System		Mass (Kg)	Avg. P (W)	Peak P (W)	
	Att.	30.00	40.00	76.0	
	Energy	28.00	10.00	10.0	
	Task	8.00	12.00	12.0	
	M&C	6.00	23.00	23.0	
Platform	Data Tr.	8.00	6.00	60.0	
	Struc.	80.00	80.00 0.00		
	Thermal	7.00	30.00	40.0	
	Line	9.00	/	/	
	Orbit	15.00	/	/	
	Propel	15.00	/	10.0	
Pavloads	LIO (Tx/Rx)	60/40	5/4	100/30	
Payloaus	LMO (Tx/Rx)	40/30	5/4	50/30	
Mass in total (Tx/Rx)		306/276			
Power in total (Tx/Rx)			131/129	381/291	

Observations of CACES

Vertical range: Earth surface – 40 to 80 km
Vertical Resolution: better than 500 m
T, P, WV, CO₂, CH₄, (etc.)

			MO		IO					
Temp		erature Sp. Humidity		Trace Species		I.o.s. Wind				
Requi	rement	Targe tThresTargetThresTargetT		Thres	Units					
Vertica	l domain	S-80 S-40 S-15 S-10 5-40 5-30 5-40 5-30				5-30	[km]			
Vortical	LT	0.5	1	0.5	1	0.5	1	0.5	1	[km]
ventical	UT	0.5	1	0.5	1	0.5	1	0.5	1	[km]
Samp-	LS	0.5	1	0.5	1	0.5	1	0.5	1	[km]
ing	US	1	2	-	-	1	2	1	2	[km]
	LT UT-	best-effort basis							Temp [K]	
RMS	bottom	1	2	10	20		Species			
accu- UT-		0.5	1	10	20		[%]			
racy	≥10KM	0.5	1	10	-					Wind
	US	1.5	3	-	-					[m/s]

To propose a LMO mission in China, NSSC has conducted a pre-study in four aspects:

- Orbit design and GRO&LMO events analysis
- Frequencies selection and error analysis
- Transmitter and receiver design&development
- Preparing an outdoor demonstration experiment

(The simulation work was conducted by using EGOPS (WEGC))

LMO payloads design

Frequencies	~9.4GHz	~14.6GHz	~17.4GHz	~22.6GHz			
Antenna Gain	≥26dB	≥27.5dB	≥28.5dB	≥30dB			
Transmit Power	≥2W	≥2W	≥2W	≥2W			
Amplitude Measurement Accuracy	Less than 0.022dB (0.5%) RMS (within 15 seconds)						
Phase Measurement Accuracy	Better than 1% cycle						
Clock Short-term Frequency Stability	Better than 1e-12/ second						
Sampling Rate	≥500Hz						
Weight		30kg (T & R)					
Power consumption	60W (T) 40W (R)						
Size	Antenna: X/Ku : φ270*920mm						
5126	Ku/K: φ200* 900mm						

Frequencies and analysis

In order to probe the lower troposphere using differential measurements, four frequency channels (see the table) were selected for the Tx and Rx design. Using these four frequencies, an error effects analysis has been conducted using End-to-End simulation (EGOPS). Each error (e.g. POD uncertainty, thermal noise, gain drift,

clock bias...) effect has been analyzed, individually. Then the total errors' effect on the LMO retrievals was performed. Here we show the total errors' effects on pressure, temperature and humidity, by RO profiles.

Antenna amplitude stability control

Tx, Rx and their indoor test

Antenna performance

≤0.01dB

0.0025dB

						Paramete s 9.4G-v 14.6G-v 17.4G-v 22.6G-v 9.4G-vf 14.6G-vf 22.6G-vf 9.4G-h 14.6G-h	er Gain (dBi) 27.03 29.11 28.61 30.90 26.95 29.39 28.71 30.85 26.49 29.08	Targets (dBi) ≥26 ≥27.5 ≥28.5 ≥26 ≥27.5 ≥28.5 ≥28.5 ≥28.5 ≥28.5 ≥28.5 ≥27.5
	~	8				17.4G-h	28.73	≥28.5
and the						22.6G-h	30.75	≥30
The the main and						9.4G-ht	26.52	≥26
This this was a						14.6G-hf	29.16	227.5
L. L.						17.4G-hf	28.83	228.5
						22.6G-hi	30.79	230
	Frequ	iencies	9.4GHz	14.6GHz	17	.4GHz	22.6GHz	
Г	Powers	Targets	≥2W	≥2W		≥2W	≥2W	
There with a r		Test values	2.29W	2.63W	2	.45W	2.63W	
performance	Freq	uencies	9.4GHz	14.6GHz	17	7.4GHz	22.6GHz	

Freq	uencies	9.4GHz	14.6GHz	17.4GHz	22.6GHz	Receiver
Gain Stability	Targets	≤0.01dB	≤0.01dB	≤0.01dB	≤0.01dB	nerformance
	Test values	0.0027dB	0.0025dB	0.0033dB	0.0032dB	periormanoe

≤0.01dB

0. 0025dB

Amplitude

Stability

Targets

Test values

EUMETSAT ROM SAF IROWG 2019, Elsinore, DK, 23 September

≤0.01dB

0.0053dB

≤0.01dB

0.0027dB

Tx, Rx and their outdoor test plan 155

Dali, Yunnan province

2

In China:

- •A flight model Sat-Sat occultation receiver has been developed for Mars
- •An Earth observation mission named Climate and Atmospheric Composition Exploring Satellites (CACES) using LEO-LEO occultation and clouds & water vapor imaging has been accepted by the Strategic Priority Research Program of Chinese Academy of Sciences (SPRPCAS) as a concept study.
- •The study of Earth LMO has been conducted in four aspects:
- Orbit design and GRO&LMO events analysis;
- Frequencies selection and error analysis;
- Transmitter and receiver design&development;
- Preparing an outdoor demonstration experiment.
- Preliminary studies of LIO have been started as well.

Look forwards your cooperation...

Conference: IEEE GNSS+R 2021 Country: China City: Beijing Start Date: 10th May 2021 End Date: 12th May 2021

Conference: IGL-2 2021 Country: China City: Beijing Start Date: 13th May 2021 End Date: 14th May 2021 We would like to provide conference venues, service and another contributions to the following on IROWG workshops as well.

or other weeks in May (TBC)

EUMETSAT ROM SAF IROWG 201