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How we observe stratospheric temperature 
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Radiosondes and RO are used as anchoring observations in the atmosphere 
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How we model stratospheric temperature (IFS)  

Purpose of this talk is to demonstrate a new application of RO 
 
 RO used to diagnose temperature model biases 
 
 RO used to correct automatically those model biases in 4D-Var  

Model upgrades include 
 resolution 
 dynamic 
 physic 

210 km 125 km 

62 km 9 km / L137 / 0.01h Pa 



October 29, 2014 

Temperature bias in the operational IFS model (1/2) 
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The short-term model bias is 
estimated by comparing the 
12-hour first-guess trajectory 
with radiosondes and GPS-RO 

0.6C 

-0.6C 

Similar signal with the two 
types of observations: 
 
 bias reduced with new 
vertical resolution (L137 in 
CY38R2) 
 
 bias increased with new 
horizontal resolution 
(Tco1279 in CY41R2) 
 
 bias increased with new 
radiative scheme      
(CY43R3) 

Radiosondes 

RO temperature retrievals 

2019 2012 
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Temperature bias in the operational IFS model (2/2) 

The bias is due to  
 discretization errors in the vertical 

advection (dynamical core)  
 inadequate representation of gravity 

waves in the vertical direction 
 

 
 model error is large 
scale and presents 
specific features 

RO can be used to diagnose the spatial 
structure of the model error 

Temperature first-guess departure with respect to RO (~70hPa, January 2017) 
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4D-Var assimilation (1/3) 

Cost function depends only on the state at the beginning of the assimilation window  

4D-Var assumes random zero-mean errors for all sources of information, but the 
IFS model has biases 

The model is assumed to be perfect (strong-constraint) 

Strong-constraint 
 

 First-guess trajectory 
 Observations 
 Compute a correction at initial time 
 Analysis trajectory 
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4D-Var assimilation (2/3)  
Unknown forcing is introduced (additive, Gaussian, constant within the assimilation 
window, no cross-correlation with the background error). 

Weak-constraint 
 

 First-guess trajectory 
 Observations 
 Compute a correction at initial time 
 Compute a model forcing η  
 Analysis trajectory 

Cost function depends on the initial state and the model forcing  
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4D-Var assimilation (3/3)  

 method described in Sasaki (1970), never worked properly at a NWP centre 
 
 error statistics (B and Q) need to be specified  

RO shows that model error (Q) 
is large scale 
 
EDA shows that background 
error (B) is small scale 
 
 Scale separation 
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Weak-constraint 4D-Var with scale separation in IFS (1/2) 

 temperature bias is reduced up to 50% (0.6C to 0.3C) with respect to radiosondes 
and GPS-RO 
 temperature RMSE is reduced by 6% 
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Weak-constraint 4D-Var with scale separation in IFS (1/2) 

Cold biases in the 
lower/middle stratosphere 
over strong convective 
regions  

Model error forcing from 
WC4DVAR at 70 hPa 
 
 correcting the bias from 
the missing gravity waves 
and the dynamical core 

0.2C -0.2C 



Forecast lead time (day) 

Impact of new weak-constraint 4D-Var analysis on forecast skills 

Mean forecast error against radiosonde temperature (70hPa) 
  

The better analysis can be seen in the forecasts 
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Strong-constraint 4D-Var 
Weak-constraint 4D-Var (analysis only) 



Forecast lead time (day) 

Impact of new weak-constraint 4D-Var forcing on forecast skills 

Mean forecast error against radiosonde temperature (70hPa) 
  

Strong-constraint 4D-Var 
Weak-constraint 4D-Var (analysis only) 
Weak-constraint 4D-Var (corrected forecast) 

 The model error estimation η is applied as a constant model forcing over 10 days 
 The forecast model is not biased anymore and mean error does not increase 
 Approach will be tested in seasonal forecast (some model error variability required) 
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Conclusions and future work 

New application of RO at ECMWF 
 
 Diagnose model deficiencies and correct them in 4D-Var 
 
 Bias reduced up to 50% with weak-constraint 4D-Var (from -0.6C to -0.3C) 
 
 
How many RO do we need to estimate the model bias? Homogeneous network? 
 
What is the impact of weak-constraint 4D-Var on the observation bias correction? 
 
What is the best way to correct forecast/reanalysis bias? Climatology for η? 
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