GNSS RO Water Vapor Histogram Results & Implications

E. R. Kursinski and A. L. Kursinski

September 23, 2019 IROWG

Key results

- Quick overview of direct retrieval + error deconvolution technique
- Evaluation of ERA5 and MERRA2 reanalyses
- Sensitivity of 1DVar GNSS moisture estimate to the *a priori* moisture estimate
- Structural uncertainty of radiance information for water vapor
- Value of AIRS Level 3 v5 & v6 results

Value of humidity histograms

• Captures the entire distribution of water vapor statistically, rising air, sinking air, mixing, evaporation,

Two Methods for Extracting Water Vapor from GPS RO Refractivity Profiles

- 1. Direct Method: $N_{wet} = N_{tot} N_{dry}$
 - Determine dry refractivity (N_{dry}) from analysis temperature profile and hydrostatic equation
 - Scale N_{wet} to get water vapor
- 2. (1D) Variational Method
 - Combine GPS refractivity or bending angle with
 - Analysis temperature & water vapor profiles and surface pressure
 - and error covariance estimates
 - \Rightarrow Over-determined, least squares solution

Advantage of Direct Method: Not affected by biases in background water vapor forecast/analysis

Deconvolution of Errors from Histograms

• Technique described in Kursinski & Gebhardt (2014)

Zonal Mean Relative Humidity GPS-MET Jun 21-Jul 4 1995

Uncertainty Estimates Derived from Error Deconvolution

- 1- σ specific humidity uncertainty at 346 mb is ~0.13 g/kg across low latitudes.
- Specific humidity |bias| < 0.03 g/kg
- 1- σ ECMWF temperature uncertainty 0.7K at equatorial latitudes

	Specific Humidity တ (g/kg)			Fractional Refractivity or (%)			Temperature σ (K)			Ref. Pressure ර (%)				
Level (mb)	KH01 global	KG14 305-30N	K+19 205-20N	K+19 30-20	KH01 global	K+04 305-30N	KG14 30S-30N	K+19 305-30N	KH01 global	KG14 30S-30N	K+19 205-20N	K+19 30-20	KH01 global	KG14 30S-30N
346	0.24	0.143	0.128	0.142	0.2	0.2	0.2	0.2	1.5	0.85	0.7	0.8	0.3	0.19
547	0.31		0.25		0.5	1	0.6	0.62	1.5	0.85	0.7	0.8	0.3	0.19
725	0.47		0.39		0.9	2	1	1	1.5	0.85	0.7	0.8	0.3	0.19

KH01: Kursinski & Hajj (2001) KG14: Kursinski & Gebhardt (2014) K+19: Kursinski & Kursinski (2019)

IROWG Sept 23, 2019

Comparison of (re)analyses at 346 mb

- Two GPS estimates
- 3 operational analyses
- 4 reanalyses
- 30S-30N
- Upper troposphere
- Quite peaked at dry end

Comparison of (re)analyses at 547 mb

- Mid troposphere
- Quite peaked at dry end

Comparison of (re)analyses at 725 mb

- Lower free troposphere
- Flatter distribution with peaks at dry & wet

Quantifying Differences Between Histograms

• Simple statistic

TAPD: Total Absolute Probability Difference

$$TAPD_{21} = \sum_{i=1}^{N} |PDF_{2}(i) - PDF_{1}(i)|$$

Sum of absolute value of the differences between two histograms, bin by bin.

Maximum value of 2 or 200%

TAPDs of (re)analyses relative to GPSD (=TAPD_G)

	Level (mb)	MERRA	ERA5	MERRA2	ECMWF 2007 op analysis	GPS 1Dvar	ERA-I	FCMWF 2007 op Lo-Res	NCEP FNL	AIRS v6	AIRS v5
TAPD _G	346	8.9%	19.0%	19.5%	19.5%	29.8%	23.7%	48.7%	42.7%	26.3%	25.8%
	547	12.6%	18.2%	20.3%	25.0%	24.5%	30.6%	55.1%	56.9%	45.6%	34.7%
	725	20.7%	14.0%	12.1%	15.5%	17.1%	19.1%	30.3%	46.9%	31.4%	45.0%
	avg	14.0%	17.1%	17.3%	20.0%	23.7%	24.5%	44.7%	48.9%	34.5%	35.2%

IROWG Sept 23, 2019

MERRA Products 547 mb

• MERRA 12.6%

• MERRA2 20.3%

MERRA Products 725 mb

• MERRA 20.7%

• MERRA2 12.1%

ECMWF and GMAO product performance evolution

Specific Humidity (g/kg)

1DVar v ERA-l 725 mb						
• 1DVar	17.1%	:				
• ERA-I	19.1%					

Similarity between 1DVar and ERA-Interim

• Two estimates dominated by GPS: GPSD and 1DVar (UCAR)

Pressure (mb)		TAPD Ratio			
	GPS 1DVar – GPSD	GPS 1DVar – ERAI	ERAI – GPSD	<u>GPS 1DVar - GPSD</u> GPS 1DV a r - ERA-I	
346	0.298	0.072	0.237	4.1	
547	0.245	0.085	0.306	2.9	
725	0.171	0.063	0.191	2.7	

- 1DVar moisture is far more similar to ERA-Interim (= *a priori*) than to GPSD
- A priori has big influence on 1DVar moisture results
- 1DVar moisture is not good for climate applications

- Spread in analysis histogram estimates is telling us something
- MERRA, MERRA2, ERA-Interim, and ERA5 reanalyses, ECMWF operational full resolution analysis and AIRS v5 & v6 Level 3 products all make use of satellite IR and microwave radiances.
- The spread in the resulting specific humidity histograms therefore indicates the structural uncertainty of the IR and microwave radiance measurements in terms of determining the humidity histograms.

• 547 mb

Summary of behavior by measurement type

- Hi res analyses/reanalyses are closest to GPSD
- But none of the estimates are closer than the difference between 2006-2007 El Nino and 2007-2008 La Nina
- AIRS v5 & v6 are not so useful, less realistic than the best climate models

Conclusions

- GPSD direct retrieval + error deconvolution appears to be most accurate humidity histograms in free troposphere (at low latitudes)
- ERA5 shows improvements relative to ERA-Interim and 2007 operational analyses, slight in UT and lower free troposphere, biggest in mid-troposphere
- MERRA2 is much better than MERRA in lower free troposphere but worse in midtroposphere and significantly worse in UT.
- AIRS Level3 v5 & v6 do not appear to be very useful
- 1DVar definitely has a memory of the humidity background, not so useful for climate
- GFDL-MC3 model is best overall CMIP5 model in terms of humidity histograms
- Structural uncertainty of radiances for constraining humidity is quite large and not clear how much guidance it can provide to climate model development

