

Present status and future directions of GNSS assimilation at NRL

Benjamin Ruston, Nancy Baker, Steve Swadley, Rolf Langland and Justin Tsu Naval Research Laboratory, Monterey, CA

7th International Radio Occultation Working Group Helsingør , DK U.S. NAVAL RESEARCH

Introduction

Summary of Operational Status

- Operational Procedure
 - Forward Operator (ROPP)
 - Observation error specification
 - Tangent point drift considerations
- Sensors assimilated
 - List of sensors and any caveats
- Impact assessment
 - Monitoring
 - FSOI (Forecast Sensitivity to Observation Impact)
 - Shown to the right (GPS highlighted in red)

New Observations

- KOMPSAT-5, GRAS MetOp-C, PAZ,
- SPIRE, GeoOptics
- CYGNSS (CYclone Global Navigation Satellite System)
 - GNSS-Reflectometry growth will be rapid

Future Directions

- Improved observation error (based on humidity)
- 2D Operator

https://www.nrlmry.navy.mil/metoc/ar_monitor/

NAVGEM Observation Sensitivity

U.S. NAVAL LRESEARCH

Operational Procedure

Summary of Operational Status

- Details of GNSS-RO assimilation
 - Assimilation of bending angle
 - 60km cap
 - Occultation points treated as independent tangent points
- Quality control checks
 - Check on the vertical bending angle gradient
- Observation error specification
 - Based on observed RMS statistics from assimilation system
 - Surface maximum 25% at Equator, 16.5% at pole
 - Decline throughout tropopause to 1.5%
 - 1.5% bulk of stratosphere
 - Use max of 0.6 µrad –or– 1.5% of observation

U.S.NAVAL LRESEARCH LABORATORY

Operational Status: Sensor Availability

U.S. Naval Research Laboratory

U.S.NAVAL RESEARCH

Operational Monitoring: Innovation (O-B)

Summary of Operational Status

2014 NAVGEM v1.2

- T359L50
- EDMF

2015 NAVGEM v1.3

- T425L60
- Θ_v dynamics

2017 NAVGEM v1.4.1

- Hybrid DA
- CrIS
- HypsIR WV

2019 NAVGEM v1.4.3

Correlated Ob Error

Evolution shows gradual improvement near model upper boundary

U.S. Naval Research Laboratory

Upper plots: mean[(O-B)/B]

Lower Plots: stdv[(O-B)/B]

U.S.NAVAL RESEARCH

Operational Monitoring: FSOI

0

60

2

Summary of Operational Status

Forecast Sensitivity to Observation Impact (FSOI)

- Consistent impact
- Metric weighted towards troposphere
 - Norm is a total energy norm
 - Combines temperature, humidity, divergence and vorticity

GNSS-RO network

- Most sensors used up to 60km
- Attempt to use in troposphere large dropoff due to conservative quality control

NAVDAS-AR GPS Ob Sensitivity

FM6 Global BA Innovation Statistics

Observation Count (thousands) Run: ops 4 6 8 10

12

U.S.NAVAL RESEARCH LABORATORY

GNSS-Reflectometry: CYGNSS

CYclone Global Navigation Satellite System

- 8 micro-sats launched Dec. 16, 2017 in LEO
- High frequency temporal sampling of inner TC structure and low spatial observation revisit time (mean ~7 hrs)
- Unprecedented spatial coverage and observation count in any weather condition due to use of microwave L-band
- Delay Mapping Receive (DMR) processes direct and reflected GPS signals to produce Delay Doppler Maps (DDMs), a representation of sea surface roughness due to a winds
- Forward Model needed!

Soil Moisture Signal (Courtesy Mohammad Al-Khaldi, Ohio State)

- Difference monthly mean CYGNSS signal to noise ratio over land (no soil moisture retrieval algorithm... yet) – 1 month change in SNR
- Compare with SMAP 1-month difference in soil moisture

07 January 2019

D. J. Posselt - Derek.Posselt@jpl.nasa.gov

Soil Moisture Signal (Courtesy Mohammad Al-Khaldi, Ohio State)

- Difference monthly mean CYGNSS signal to noise ratio over land (no soil moisture retrieval algorithm... yet) – 1 month change in SNR
- Compare with SMAP 1-month difference in soil moisture

07 January 2019

D. J. Posselt - Derek.Posselt@jpl.nasa.gov

Land Surface Inundation (Clara Chew, Talk 4.4, Tues 8 Jan, 9:15 AM)

CYGNSS signal sensitive to surface water – examine Amazon

07 January 2019

D. J. Posselt - Derek.Posselt@jpl.nasa.gov

U.S. NAVAL RESEARCH

Future Directions

Plans and Investigations

PAZ

• 13Aug2019 available from NOAA, but not yet on GTS

COSMIC-2

• Ready to evaluate and use the data upon release

Observation Error

- Error estimate based on atmospheric humidity profile
- Additional investigations into error modeling in lower troposphere could bring more improvements

2D Observation Operator

- Begin testing 2-dimensional bending angle operator
- Plan is to treat occultation in segments to alleviate the condition of crossing covariance volumes

U.S. Naval Research Laboratory