

Recent developments on the assimilation of GNSS-RO bending angles in the Météo-France 4D-Var system

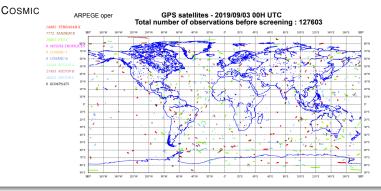
Dominique Raspaud MÉTÉO-FRANCE/DR/CNRM IROWG 2019, Elsinore, 19-25 september 2019

1 Current assimilation of GNSS-RO data at Météo-France

- 2 Use of new observations
- 3 Tests on the 2D bending angle operator
- 4 Conclusion and prospect

Page 1/ 21

1 Current assimilation of GNSS-RO data at Météo-France


- 2 Use of new observations
- 3 Tests on the 2D bending angle operator
- 4 Conclusion and prospect

The use of GNSS-RO data at Météo-France

In the global 4D-Var data assimilation system ARPEGE

- \simeq 120.000 data per 6-hour assimilation window (\sim 1% of the total observations)
- TERRASAR-X, TANDEM-X
- МЕТОР

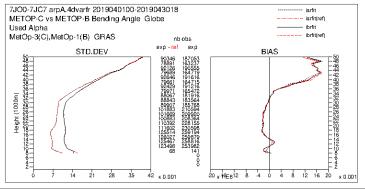
Page 3/ 21

GNSS-RO operational assimilation at Météo-France

In the global 4D-Var data assimilation system ARPEGE

- since 2007
- assimilation of bending angles up to 50 km
- rising/setting occultations
- 1D observation operator
- tangent point drift taken into account
- anchor data for variational bias correction

- Current assimilation of GNSS-RO data at Météo-France
- 2 Use of new observations
- 3 Tests on the 2D bending angle operator
- 4 Conclusion and prospect


GRAS ON METOP-C

- METOP-C data assimilated in ARPEGE operational system since July 2019
- ROM SAF BUFR files
- assimilated from 10 km up to 50 km in the tropics, from 8 km elsewhere (as for METOP-A & B)
- 25% additional GNSS-RO data

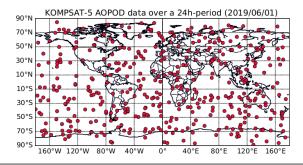
GRAS on METOP-C

- quality comparable to METOP-A and METOP-B
- O-B and O-A bending angle departure statistics (Globe, 2019/04) : METOP-C + METOP-B (experiment, black) compared to METOP-B (reference, red)

Page 7/ 21

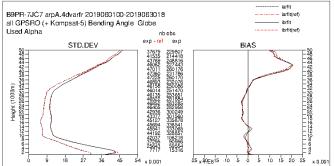
GRAS ON METOP-C

forecast score cards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over NH (left) and SH (right) from 2019/04 to 2019/06 :


	Ref.	Radiosondes	IFS analysis		Ref.	Radiosondes	IFS analysis	
	Range	0H to 96H timestep 12H	0H to 102H timestep 6H		Range	0H to 96H timestep 12H	0H to 102H timestep 6H	
Geopotential	100hPa	▼▲▼▲=║===	*****		100hPa	▲ ▲ ▲ ▲ = = =	******	
	500hPa	• = = = = = = = = =	****	Geopotential	500hPa	A A A A = = = =	*****	
	850hPa		A A A A A=====================	Geopotentia	850hPa	▲ = ▲ = = = = =	*********	
	1000hPa		* * ======================		1000hPa		▼== ▲ ▲ =====	
Temperature	100hPa		A A A A = A = = = = = = = = = = = = = =		100hPa	-	*****	
	500hPa		=======================================	Temperature	500hPa		A A A A A = = =	
	850hPa			remperature	850hPa			
	1000hPa		- • -		1000hPa		== ▲ = = = ▲ = = = = = = =	
Wind	250hPa				250hPa	= 🔺 = = 🗒 = = = = =	AA = AAAAA AA =====	
	500hPa			Wind	500hPa			
	850hPa				850hPa			
Humidity	400hPa				400hPa			
	700hPa	-			700hPa			
	850hPa				850hPa	= = = = = = = = 🔻	= = ▲ ▲ = = = = = = = = = =	

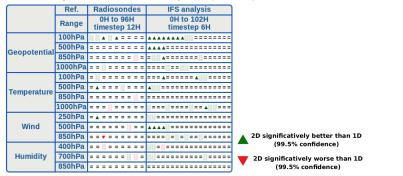
statistically significant improvement for geopotential and temperature for most of the domains at short range

Testing KOMPSAT-5 (AOPOD)


- available since May 2019
- 14% additional GNSS-RO data over globe
- first tests by assimilating the data from 0 up to 50 km

Testing KOMPSAT-5 (AOPOD)

 O-B and O-A bending angle departure statistics over Globe for a 1-month period (2019/06) : operational GPSRO + KOMPSAT-5 (exp, black) compared to operational GPSRO (reference, red)


promising results : fit to guess and analysis rather similar to other GPSRO data

Recent developments on the assimilation of GNSS-RO at Météo-France

Testing KOMPSAT-5 (AOPOD)

forecast score cards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over SH for a 1-month period (2019/06):

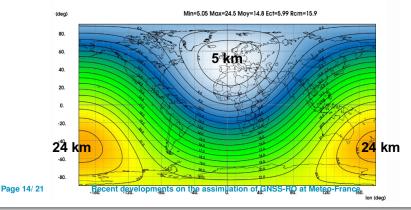
statistically significant improvement for geopotential for most of the domains at short range, slight positive impact for other parameters in the troposphere.

- Current assimilation of GNSS-RO data at Météo-France
- 2 Use of new observations
- 3 Tests on the 2D bending angle operator
- 4 Conclusion and prospect

The current 1D observation operator

1D bending angle operator that doesn't take into account the 2D nature of the measurement and integrates :

$$\alpha(a) = -2a \int_{a}^{\infty} \frac{d \ln(n)/dx}{\sqrt{x^2 - a^2}} dx$$
(1)


where *x=nr* refractive index × radius

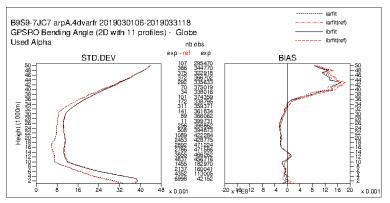
1D operator only requires a single profile at a given location

Towards a 2D observation operator in ARPEGE

- 2D operator : the NWP information must be available at multiple locations within a 2D slice defined by the 2D occultation plane (Healy et al. 2007)
- existing code for the 2D operator developed and used at ECMWF (Healy et al. 2007)
- implementation in IFS : 31 NWP profiles in the 2D occultation plane separated by 40 km
- adjustement of the ECMWF code to the stretched and tilted ARPEGE grid

ARPEGE resolution T1798 C2.2

Experiments with 2D operator


Implementation of a set of experiments

- 2-month period (March-April 2019)
- operational version of the model (all observations and full resolution)
- reference : 1D operator
- 2D experiments : tests on 5 numbers of NWP profiles in the 2D plane
 - 11 profiles
 - · 21 profiles
 - · 31 profiles
 - · 51 profiles
 - · 101 profiles

Impact of 2D

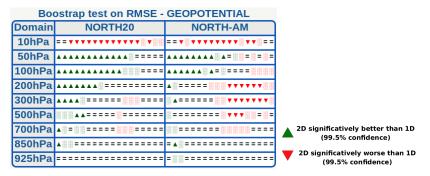
 O-B and O-A bending angle departure statistics over Globe for a 1-month period (2019/03) : 2D with 11 profiles (exp, black) compared to 1D (reference, red)

more observations assimilated with 2D (+2% < 10 km)</p>

■ better fit to guess (std dev reduced < 15 km and bias reduced by 10 to 20% > 35 km)

Impact of 2D on the forecast skills

Forecast score cards (31 profiles) over SH for the 2-month period 2019/03/05 to 2019/05/05 :


	Ref	Radiosondes	IFS analysis	
	Range	0H to 96H timestep 12H	0H to 102H timestep 6H	
Geopotential	100hPa	▲ = = = = = = =	****	
	500hPa	▲ = = = =	***	
	850hPa	▲ = 🛛 = = = = = = =	****	
	1000hPa			
	100hPa			
Townstature	500hPa		▼= ▲	
Temperature	850hPa			
	1000hPa	= = 🔻 = 🔻 = =		
Wind	250hPa			
	500hPa		-	
	850hPa			
Humidity	400hPa			2D significatively better than 1 (99.5% confidence)
	700hPa			
	850hPa			2D significatively worse than 1 (99.5% confidence)

 statistically significant improvement compared to 1D for geopotential at short range for all domains (SH, NH, tropics). Slight positive impact for other parameters / ranges.

Impact of 2D on the forecast skills

Forecast score cards against IFS analysis (2D with 31 profiles) over NH and North America for a 2-month period (2019/03/05 to 2019/05/05) :

 improvement with 2D for geopotential at short range in altitude BUT clear deterioration in the troposphere over North America at medium range for most parameters (Z, T, wind, Hu).

Computing cost of the 2D operator

- strong impact mainly in the first minimization
- elapsed time for the first minimization in ARPEGE depending on the number of profiles :

	Number of profiles						
	1	11	21	31	51	101	
Mean time (seconds)	538 s	578 s	612 s	647 s	766 s	1066 s	

cost increased by 20% with 31 profiles compared to 1D, nearly 100% with 101 profiles !

- 1 Current assimilation of GNSS-RO data at Météo-France
- 2 Use of new observations
- 3 Tests on the 2D bending angle operator
- 4 Conclusion and prospect

Conclusion and prospect

Use of new observations

- beneficial assimilation of METOP-C data in the Météo-France operational global model with a significant positive impact on the forecast skills
- promising tests on KOMPSAT-5 data with planned tests excluding the data below 10 km in the tropics

2D operator

- neutral to slightly positive impact in the troposphere
- encouraging improvement of the scores for geopotential
- troubling degradation of the scores over North America :
 - \rightarrow GPSRO information inconsistent with conventional observations?
 - \rightarrow influence of the stretched grid?
- planned tests with a reduced number of profiles in the minimization in order to reduce the computing cost
- compromise between slight improvement and increased computational cost ...

