

VALERIA CIGALA*, RICCARDO BIONDI, FRED PRATA, ANDREA STEINER, GOTTFRIED KIRCHENGAST, AND HUGUES BRENOT

*valeria.cigala@unipd.it

Volcanic eruptions and clouds

Hazard related to volcanic clouds

Volcanic ash <2 mm and as fine as 1 μ m

Impact both the **vicinity** and **far** from the source

Burial of buildings

Health hazard

Aviation hazard

Hazard related to volcanic clouds

Impact both the **vicinity** and **far** from the source

Impact of the atmosphere structure

Climate impact

The suspect profile: what we want to know

Dispersion and altitude estimation

hyperspectral UV and IR sensors

	Volatile species									
Sensor ^a	H ₂ 0	C02	C0	50 ₂	H ₂ S	HCI	BrO	OCIO	CH ₃ CI	Timespan
TOMS*										1978-2005
SBUV* (P)										1978-present
HIRS*										1978–present
GOME										1995-2003
MODIS*										1999-present
ASTER										1999-present
MOPITT										1999-present
SCIAMACHY (L)										2002-2012
MIPAS (L)										2002-2012
AIRS										2002–present
ACE (L)										2003-present
SEVIRI										2004-present
ОМІ										2004-present
MLS* (L)										1991-2001; 2004-present
TES (P)										2004-present
GOME-2*										2006-present
IASI*										2006-present
OMPS*										2011-present
VIIRS										2011-present
CrIS										2011-present
AHI										2015-present
GOSAT (P)										2009–present
0C0-2										2014-present

CALIOP lidar

When GNSS RO comes into place

CALIOP lidar

60 m vertical resolution

Low spatial and temporal resolution

GNSS RO

200 m vertical resolution UTLS

Successful on convective clouds' altitude

And on thermal effect of volcanic eruptions

June 20, 2018 - ATTENTION: ONGOING

ALTERNATIVE CALIOP is experiencing an elevated frequency of low energy laser shots within and near the South Atlantic Anomaly (SAA) region which has degraded the science quality of affected profiles since September 2016. Please see the Low Laser Energy Advisory page for further information and guidance for identifying affected profiles.

When GNSS RO comes into place

CALIOP lidar

60 m vertical resolution

Low spatial and temporal resolution

June 20, 2018 - ATTENTION: ONGOING

ALTERNATIVE CALIOP is experiencing an elevated frequency of low energy laser shots within and near the South Atlantic Anomaly (SAA) region which has degraded the science quality of affected profiles since September 2016. Please see the Low Laser Energy Advisory page for further information and guidance for identifying affected profiles.

GNSS RO

Wide spatial and temporal coverage Public and private missions

Can GNSS RO be used as an operational tool in volcanic cloud monitoring?

Kasatochi eruption 2008 – Case study

Aleutian arc

- 314 m above sea level
 - 07 August 2008
 - 3 large explosions within 6 hours

Eruptive column up to 14 km

0.3-2.7 Tg SO₂ & 0.3-0.5 Tg ash

detected for 4 months

A team effort: AIRS IASI GOME CALIOP RO

Maps of the volcanic cloud

• AIRS, IASI and GOME IR & UV acquisitions

• Different times and locations

Cloud altitude estimation

• RO bending angle anomaly

Cloud altitude validationCALIOP lidar backscatter acquisitions

Collocation round 1 – cloud maps

Collocation round 2 – altitude validation

Estimating the volcanic cloud altitude

Total climatology on 10° latitude bands

- Calculate the banding angle anomaly
- Select peaks with prominence > 5% above 10km

Validating the altitude estimations

Validating the altitude estimations

CALIOP volcanic cloud altitude [km]

RO vs. CALIOP error analysis

Advantages and limits

Large potential spatial and temporal coverage

It's a blind technique

Volcanic or meteo-cloud?

Increasing the collocation precision

- Increases the estimation accuracy
- Decreases the number of observations

Validation from only ONE available lidar

small number of observations

Future work

The launch of new missions will provide wider coverage

 Potential for detecting smaller eruptive clouds

Volcanic clouds database

Within the WMO SCOPE

- Potential for training a neural network for top cloud estimation
- Comparison and validation with other different available algorithms

Take home message

GNSS RO potential operational tool

Complementary to current volcanic cloud imagery methodologies

Thank you!

Cigala, V., Biondi, R., Prata, A.J., Steiner, A.K., Kirchengast, G., and Brenot, H., (2019).

GNSS radio occultation advances the monitoring of volcanic clouds: the case of the 2008 Kasatochi eruption. Remote Sensing, 11(19), 2199; https://doi.org/10.3390/rs11192199

References

Biondi, R., Randel, W. J., Ho, S.-P., Neubert, T., & Syndergaard, S. (2012). Thermal structure of intense convective clouds derived from GPS radio occultations. *Atmospheric Chemistry and Physics*, *12*(12), 5309–5318. <u>https://doi.org/10.5194/acp-12-5309-2012</u>

Biondi, R., Steiner, A. K., Kirchengast, G., Brenot, H., & Rieckh, T. (2017). Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation. *Advances in Space Research*, 60(12), 2707–2722. <u>https://doi.org/10.1016/j.asr.2017.06.039</u>

Carn, S. A., Clarisse, L., & Prata, A. J. (2016). Multi-decadal satellite measurements of global volcanic degassing. *Journal of Volcanology and Geothermal Research*, *311*, 99–134. <u>https://doi.org/10.1016/j.jvolgeores.2016.01.002</u>

Lechner, P., Tupper, A., Guffanti, M., Loughlin, S., & Casadevall, T. (2017). Volcanic Ash and Aviation—The Challenges of Real-Time, Global Communication of a Natural Hazard. In Observing the Volcano World (pp. 51-64). Springer, Cham.

Nogueira, T., Dombrovski, S., Busch, S., Schilling, K., Zakšek, K., & Hort, M. (2016, June). Photogrammetric ash cloud observations by small satellite formations. In 2016 IEEE Metrology for Aerospace (MetroAeroSpace) (pp. 450-455). IEEE.

Tupper, A., Carn, S., Davey, J., Kamada, Y., Potts, R., Prata, F., & Tokuno, M. (2004). An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western "Ring of Fire." *Remote Sensing of Environment*, *91*(1), 27–46. <u>https://doi.org/10.1016/j.rse.2004.02.004</u>

Extra slide – climatology

10° latitude bands

VS.

2.5 $^\circ$ x2.5 $^\circ$ grid

Extra – double passage of CALIOP

Extra slide – outliers

Analysis of the impact on climate

Credit: Elżbieta Lasota

Analysis of the thermal structure of the atmosphere after eruptions of at least VEI >3 via the residuals's analysis.

Merapi, Tengger and Tungurahua erupted in November 2010 within 15 days.

For 7 months → observable warming of the low stratosphere at low latitude

• Peak warming after 4 months

Hazard related to volcanic clouds

Volcanic ash <2 mm and as fine as 1 μm

Impact both the **vicinity** and **far** from the source

Aviation hazard

6 – 13 km