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Abstract
Bi-local spherical symmetry

We have developed the theory for a bi-local estimation oidtes ionospheric errors in bending angle
profiles retrieved from radio occultation (RO) measurermeBt-local in this context refers to the situation
where the electron density is different, though still spdadly stratified, on the transmitter-inbound and
receiver-outbound sides of the RO tangent points. As omptiséocal spherical symmetry, we call this
bi-local spherical symmetry. So far, theoretical estimaitionospheric residual errors have been based
on the assumption of local spherical symmetry. We here dxseich estimates to the case of bi-local
spherical symmetry. The theory also takes into accountdh&ibution from the geomagnetic field in the
lonospheric refractive index, and as well allows for a nenedocal electron density at the receiver in orbit.
As part of the derivations, we found a small term not prevypuosted, which can become appreciable for
elliptical satellite orbits. The results were verified by teacing through simple models of the ionospheric
electron density and geomagnetic field. The accuracy ofidualserror correction based on these results
would be limited by the uncertainty in knowledge of the ioploaric electron density and by horizontal Figure5: lllustration of bi-local spherical symmetry. The neutréinasphere is spherically symmetrical, and the ionosphere |
electron density gradients along the ray paths. Finally eistgo results from follow-on work that applied sphgrlcally stratified on each side of the tangent points siat Bouguer’'s law can be applied for rays with tangent {sdoelow
the theory to test-day ensembles of real RO data from Met&ACE, and CHAMP. the lonosphere.

/ .
Bouguers law :  a = rsin Yy = constant

e Assume that the ionosphere is different on each side of tigetat points, but still spherically stratified away
M odels and setup from the tangent points (bi-local symmetry)

e Then the impact parameter for ray paths with tangent poietslvelow the ionosphere (below 80 km where

Results are based on series expansions to ofdér including terms of possible size10~2 urad with the it is relevant for neutral atmosphere retrieval purposes}ill invariant along the path

help of ray tracing and retrieval simulations using nomiar LEO orbit at~450 km, spherically symmetrical

geomagnetic field, and model profiles as showhiiure 1. Various parameters are definecFigure 2. e Derivations leading to the residual errors in the standarcection are still valid in the case of bi-local spher-

iIcal symmetry for impact parameters with tangent point®wehe ionosphere, we just need to emphasize
the possiblity that the ionosphere on the GNSS side can faretit from the ionosphere on the LEO side:
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The bi-local correction method has been applied in followwork to test-day ensembles of real Metop,
Figure4: Errors resulting from ignoring the electron density at tHeQ_satellite for a simulated case with a non-circular LEO GRACE, and CHAMP data, intercomparing to the standard come and to the kappa-correction by Healy and
orbit. Left: The error in the derived impact parameter. Ridghne residual error in the ionospheric corrected bendnea Culverwell (2015). The results so far show a clear addedavaf@applying the bi-local method (Liu et al., 2019).
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