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Abstract

Variations of the three-cornered hat (3CH) method for estimat-
ing random error variances associated with three or more data
sets have been reported in the literature for studying geophys-
ical data sets, including sea-surface winds, sea-surface temper-
atures, precipitation, leaf area index and soil moisture. Anthes
and Rieckh (2018) and Rieckh and Anthes (2018) used the 3CH
method to estimate the error variances of multiple atmospheric
sounding data sets. However the methods used often contain
subtle variations and make different assumptions. Here we de-
rive the full 3CH equations that relate the error variance of three
or more observations to the variance of differences between the
data sets and the error covariances among the different data sets.

Three-cornered hat relations

Consider the data sets X1, X2, and X3 with individual elements i = 1, 2, .... We
assume that these may be cast as

X1,i = Ti + bX1 + εX1,i (1a)
X2,i = Ti + bX2 + εX2,i (1b)
X3,i = Ti + bX3 + εX3,i , (1c)

where Ti is a set of reference values; the b terms are mean differences of the
individual data sets from the reference data set; and the ε terms are sets of zero
mean, not necessarily Gaussian random variations.

To remove the mean difference terms b, we subtract the mean E [·] of each data
set:

X ′1,i = T ′i + εX1,i (2a)
X ′2,i = T ′i + εX2,i (2b)
X ′3,i = T ′i + εX3,i , (2c)

where primes denote difference from the mean.

The unique set of the variance of differences between data sets can be written
Var [X1,i −X2,i] = Var [εX1,i] + Var [εX2,i]

− 2Cov [εX1,i, εX2,i] (3a)
Var [X1,i −X3,i] = Var [εX1,i] + Var [εX3,i]

− 2Cov [εX1,i, εX3,i] (3b)
Var [X2,i −X3,i] = Var [εX2,i] + Var [εX3,i]

− 2Cov [εX2,i, εX3,i] , (3c)
where Cov [·] is the covariance between two quantities.

The relations for error variance can be derived by linearly combining Eqs. (3a-c):

Var [εX1,i] = 1
2

(Var [X1,i −X2,i] + Var [X1,i −X3,i]− Var [X2,i −X3,i])

+ Cov [εX1,i, εX2,i] + Cov [εX1,i, εX3,i]− Cov [εX2,i, εX3,i] (4a)

Var [εX2,i] = 1
2

(Var [X1,i −X2,i] + Var [X2,i −X3,i]− Var [X1,i −X3,i])

+ Cov [εX1,i, εX2,i] + Cov [εX2,i, εX3,i]− Cov [εX1,i, εX3,i] (4b)

Var [εX3,i] = 1
2

(Var [X1,i −X3,i] + Var [X2,i −X3,i]− Var [X1,i −X2,i])

+ Cov [εX1,i, εX3,i] + Cov [εX2,i, εX3,i]− Cov [εX1,i, εX2,i] . (4c)

Four-cornered hat relations

Following the derivation of the 3CH relations, it may be shown that the four-
cornered hat error variance relation for data set X1,i is

Var [εX1,i] = 1
3

(Var [X1,i −X2,i] + Var [X1,i −X3,i] + Var [X1,i −X4,i])

− 1
6

(Var [X2,i −X3,i] + Var [X2,i −X4,i] + Var [X3,i −X4,i])

+ 2
3

(Cov [εX1,i, εX2,i] + Cov [εX1,i, εX3,i] + Cov [εX1,i, εX4,i])

− 1
3

(Cov [εX2,i, εX3,i] + Cov [εX2,i, εX4,i] + Cov [εX3,i, εX4,i]) . (5)
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N-cornered hat relations

The error variance relation derivation may be generalized for N data sets such
that we may write the error variance for X1,i as

Var[ε1,i] = 1
N − 1

N∑
n=2

Var[X1,i −Xn,i]

− 1
(N − 1)(N − 2)

N−1∑
n=2

N∑
m=n+1

Var[Xn,i −Xm,i]

+ 2
N − 1

N∑
n=2

Cov[X1,i, Xn,i]

− 2
(N − 1)(N − 2)

N−1∑
n=2

N∑
m=j+1

Cov[Xn,i, Xm,i] ,

and so on for the additional N − 1 data sets.

3CH relations using 4 data sets

Note that we may use four data sets with the 3CH method to get three separate
relations for the error variance of each data set. E.g., consider X1,i and assume
all error covariance terms are 0 – a standard assumption for applying the 3CH
method to real data – we find

Var [εX1,i] = 1
2

(Var[X1,i −X2,i] + Var[X1,i −X3,i]− Var[X2,i −X3,i])

Var [εX1,i] = 1
2

(Var[X1,i −X2,i] + Var[X1,i −X4,i]− Var[X2,i −X4,i])

Var [εX1,i] = 1
2

(Var[X1,i −X3,i] + Var[X1,i −X4,i]− Var[X3,i −X4,i]) .

Combining,

3Var [εX1,i] = 1
2
(Var[X1,i −X2,i] + Var[X1,i −X3,i] + Var[X1,i −X2,i]

+ Var[X1,i −X4,i] + Var[X1,i −X3,i] + Var[X1,i −X4,i]
− Var[X2,i −X3,i]− Var[X2,i −X4,i]− Var[X3,i −X4,i]) .

This can be reduced to
Var[εX1,i] = 1

3
(Var[X1,i −X2,i] + Var[X1,i −X3,i] + Var[X1,i −X4,i])

− 1
6

(Var[X2,i −X3,i] + Var[X2,i −X4,i] + Var[X3,i −X4,i]) ,

which is identical to the four-cornered hat error variance relation for X1,i in Eq.
(5) with 0-valued error covariance terms.

Number of relations for the 3CH method

For the 3CH method with N data sets, we can write the system of variance
of differences as

Var [X1,i −X2,i] = Var[εX1,i] + Var[εX2,i]− 2Cov[εX1,i, εX2,i]
Var [X1,i −X3,i] = Var[εX1,i] + Var[εX3,i]− 2Cov[εX1,i, εX3,i]

...
Var [X1,i −XN,i] = Var[εX1,i] + Var[εXN,i]− 2Cov[εX1,i, εXN,i]

...
Var [XN−1,i −XN,i] = Var[εX(N−1),i] + Var[εXN,i]

− 2Cov[εX(N−1),i, εXN,i] .
Note that in the above, there are N−1 relations containing instances of Var[ε]
for each data set X . The method of solving for error variance is to combine
any two of these relations along with a third that includes the relevant two
data sets that are carried along with those two relations. The total number
of error variance relations Nε is thus given by “(N − 1) choose 2,” or

Nε =
N−2∑
i=1

i = (N − 1)(N − 2)
2

. (6)

Other variance relationships

The set of variances for X1,i can be written
Var

[
X ′1,i

]
= Var [T ′i ] + Var [εX1,i] + 2E [εX1,iT

′
i ] . (7a)

For data sets X ′1,i and X ′2,i, the variance of the sum is

Var
[
X ′1,i + X ′2,i

]
= E

[
(T ′i + εX1,i + T ′i + εX2,i)2]

= E
[
4T ′2i + ε2

X1,i + ε2
X2,i + 2εX1,iεX2,i

+ 4εX1,iT
′
i + 4εX2,iT

′
i

]
= 4Var [T ′i ] + Var [εX1,i] + Var [εX2,i]
+ 2Cov [εX1,iεX2,i] + 4E [(εX1,i + εX2,i) T ′i ] . (9)

Example: 3CH with six data sets

Figure 1:Normalized 3CH error variance estimates for refractivity from COSMIC radio occultation
data spanning 2008-07-01 through 2008-07-31. The respective triplets are labeled by color and
the mean of the ten estimates is shown in black. The number of input data points are shown by
the black dotted curve. The normalization is shown on the right.

For six data sets – COSMIC RO, ERAi, MERRA-2, 20th Century Reanalysis,
JRA-55, and JRA-55C – as in Figure 1, we can produce ten estimates of the
error variance for a given data set. This allows us to evaluate the spread between
the estimates, telling us how valid our assumption of zero error covariance is. In
the above, the relatively small spread above 10 km suggests that assumption is
valid while the increased spread near the surface suggests that there are non-zero
error covariances.

The two-cornered hat relations

The two-cornered hat – or “triple co-location method” – error variance relation
for X1,i is found by taking Eqs. (9)-(3a)-4·(7a):

Var
[
X ′1,i + X ′2,i

]
− Var

[
X ′1,i −X ′2,i

]
− 4Var

[
X ′1,i

]
= −4Var [εX1,i] + 4Cov [εX1,iεX2,i]− 4E [εX1,iT

′
i ] + 4E [εX2,iT

′
i ]

=⇒ 4Var [εX1,i]
= 4Var

[
X ′21,i −X ′1,iX

′
2,i

]
+ 4Cov [εX1,iεX2,i]− 4E [(εX1,i − εX2,i) T ′i ]

=⇒ Var [εX1,i]

= 1
2
(
Var

[
X ′1,i −X ′2,i

]
+ Var

[
X ′1,i

]
− Var

[
X ′2,i

])
+ Cov [εX1,i, εX2,i]− E [(εX1,i − εX2,i)T ′i ]

Note that unlike the 3CH method and its generalization to N data sets, the
above relies on knowledge or assumptions about the reference data set Ti.

Summary

For data sets that can be cast following Eqs. (1a-c), we may
derive the 3CH relations for error variance. By assuming that
there is no error covariance between the three data sets, we may
apply this method to observations.

Here we show that:
• The 3CH method can be generalized for error variance
estimation using N different data sets.
• The single estimate of error variance using the N data sets is
equal to the mean of the (N−1)(N−2)

2 estimates of error
variances for each individual data set using the 3CH method.
These estimates can be used to evaluate our assumption of no
error covariance between any given triplet of data sets.
• The 3CH method contains as a subset three estimates of
error variance using only two sets of data – sometimes called
the “triple co-location method.” Application of this method
requires making assumptions about the reference data set
that will lead to decreased accuracy.
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