Multi-Mission Multi-Center Level 1 Data Inter-Validation towards Wegener Center Reference Occultation System Reprocessing

J. Innerkofler^{1,2}, G. Kirchengast^{1,2}, M. Schwärz¹, Y. Andres³, C. Marquardt³, A. Jäggi⁴, D. Hunt⁵

 Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics, Astrophysics and Meteorology/Institute of Physics, University of Graz, Graz, Austria

 (2) FWF-DK Climate Change, University of Graz, Graz, Austria
 (3) EUMETSAT, Darmstadt, Germany
 (4) Astronomical Institute, University of Bern, Bern, Switzerland
 (4) COSMIC Program, UCAR, Boulder, CO, USA

Thanks for funds to

24 Sep, 2019 - EUMETSAT ROM SAF - IROWG 2019, Helsingør, Denmark

Outline

Introduction

• Reference Occultation Processing System

2 Precise Orbit Determination

3 Excess phase processing

4 Summary & Outlook

The Radio Occultation method

Reference Occultation Processing System

- Reference Occultation Processing System (rOPS), providing reference RO data for calibration/validation and climate monitoring (Kirchengast et al. [2016], OPAC-IROWG)
- Aims to process the full chain from the SI-tied raw data to the ECVs with integrated uncertainty propagation: highly reversible analysis along the RO retrieval chain and its variables

Wegener Center

UNI

GPA7

rOPS system overview

EUMETSAT ROM SAF - IROWG 2019, Helsingør, Denmark, 24 Sep 2019

Level 1a processing scheme

Observation Geometry Modeling

- L1a Excess Phase Processing: calculation of the difference between straight line propagation and real path
- Observation Geometry Modeling: accurate determination of position, velocity, and clocks of GNSS and LEO satellite

GNSS and LEO orbit input data so far \ldots

- was provided as part of the external excess phase (L1a) products
- from CDAAC¹ and EUMETSAT²

¹https://cdaac-www.cosmic.ucar.edu/

²https://eoportal.eumetsat.int/

J. Innerkofler et al.

Precise orbit determination for GNSS-RO

- ... so why bother with an independent POD processing?
 - external orbit processing represents a blackbox
 - various differences between different solutions:
 - \rightarrow different software packages, force models, parameterizations \ldots
 - strong dependency in occultation phase data calibration:
 - \rightarrow measurement time-stamp correction through clock bias estimates
 - \rightarrow orbit position inherent to range calculation for excess phase
- ... in order to tackle this challanges we:
 - employ two independet software packages,
 - use data from different GNSS orbit archives,
 - provide measures for the orbit quality,
 - and aim at orbit uncertainties to be within 5 cm (position) and 0.05 mm/s (velocity), for highest quality of derived RO profiles

GNSS and LEO orbit input data

- we use data from different GNSS Orbit archives:
 - CODE³ Center for Orbit Determination Europe
 - IGS⁴ International GNSS Services
- LEO L0 and L1a input data from:
 - EUMETSAT, Darmstadt: MetOp-A/-B/-C
 - UCAR, Boulder: COSMIC, CHAMP, GRACE
 - JPL, Pasadena: CHAMP, GRACE, SAC-C
 - GFZ, Potsdam: CHAMP
 - NSSC, Beijing: FengYun-3C/-3D
 - SPIRE, Boulder: Lemur-2

³http://www.aiub.unibe.ch/research/code___analysis_center/index_eng.html
⁴http://www.igs.org/

J. Innerkofler et al.

Core mission details (nominal parameter)

	СНАМР	GRACE-A	Metop-A	Metop-B
Altitude	450 km	500 km	817 km	817 km
Inclination	87.2 deg	89.0 deg	98.7 deg	98.7 deg
Period	93.6 min	94.5 min	101 min	101 min
Mass	522 kg	431 kg	4093 kg	4093 kg
POD-Antenna	1	1	1	1
RO-Antenna	1	1	2	2
GPS-Receiver	BlackJack	BlackJack	GRAS	GRAS
LRA	yes	yes	no	no
Launch	2000-07-15	2002-03-17	2006-10-19	2012-09-17
Status	ended 2008	ended 2017	operational	operational

J. Innerkofler et al.

POD software

	Bernese	Napeos
Software	Bernese v5.2 (AIUB ¹)	Napeos 3.3.1 (PosiTim ²)
Arc length	24 hours	24 hours
Sampling	30 sec	30 sec

⁵http://www.bernese.unibe.ch/

⁶http://www.positim.com/

J. Innerkofler et al.

EUMETSAT ROM SAF - IROWG 2019, Helsingør, Denmark, 24 Sep 2019

Orbit comparison - Metop-A, Metop-B

Wegener Center

Orbit comparison - CHAMP

	IGS	NAP	EUM	UCAR
Radial	0.28	2.62	2.09	1.92
Along	0.58	2.51	3.23	3.43
Cross	0.46	3.34	1.58	1.40
3D	0.82	4.38	4.30	4.14

no station selection

elevation cut-off angle 10 degree

EUMETSAT ROM SAF - IROWG 2019, Helsingør, Denmark, 24 Sep 2019

Orbit comparison - GRACE-A

	COD(I1b)	CODE	IGS	UCAR
Radial	0.54	0.80	0.85	3.51
Along	1.47	5.27	5.16	4.56
Cross	1.15	1.22	1.44	3.12
3D	1.66	5.24	5.29	6.54

GRACE-A: Reference Orbit: WEGC-Bernese (CODE) mean = 0.15 15 rms = 3 40. stddev = 3.40 10 sidual [cm] a la -10-15 -20 lul-01-2008 Aug-01-2008 Sep-01-2008 Oct-01-2008 Dav mean [cm stddev [cm RMS 0.15 3.40 3.40

- no station selection, outlier correction 20cm
- elevation cut-off angle 10 degree

Orbit comparison - GRACE-A ... improved

	COD(l1b)	CODE	IGS	UCAR
Radial	0.54	0.62	0.62	3.51
Along	1.47	4.42	4.36	4.56
Cross	1.15	1.18	1.39	3.12
3D	1.66	4.25	4.33	6.54

EUMETSAT ROM SAF - IROWG 2019, Helsingør, Denmark, 24 Sep 2019

- no station selection, outlier correction 20cm
- elevation cut-off angle 10 degree

Orbit uncertainty estimates

random uncertainty:

- error propagation in Bernese (ORBCOV) [Jäggi 2007]:
 - \rightarrow estimation essentially based on the satellite constellation only
 - \rightarrow optimistic estimates, hence empirical coverage factor 2 applied

systematic uncertainty:

- estimates based on the combination of:
 - \rightarrow the differences b/t Bernese and Napeos orbit solution
 - \rightarrow the differences b/t Bernese solution based on CODE and IGS input
 - ightarrow SLR residuals (if satellite equipped with a laser retroreflector)

CHAMP orbit quality - "ordinary" day

day: 2008-07-16

- all measures below 5 cm except quality measure 2 slightly exceeding the target specifications
- additional SLR measure

EUMETSAT ROM SAF - IROWG 2019, Helsingør, Denmark, 24 Sep 2019

- radial cross along

00:00

21:00

18:00

CHAMP orbit quality - "degraded" day

day: 2008-08-29

10

-5

-10

[m]

3drms = 14.32

00:00

03:00

06:00 09:00 12:00

time [hh:mm]

09:00 12:00 15:00 18:00 21:00 00:00

Quality Measure 2: Napeos (CODE) vs. Bernese (CODE)

time [hh:mm]

15:00

radial

cross

along

Daily Uncertainty Estimates - Metop-B, CHAMP

CHAMP 0.0200 20.0 0.0200 • random • random systematic systematic combined combined 0.0175 0.0175 0.0150 ---- 0.0150 ----15.0 [m] 0.0125 12.5 - 0.0125 0.0100 10.0 - 0.0100 0.0075 75 - 0.0075 Jaily | · 0.0050 ² 5.0 0.0050 0.0025 2.5 0.0025 0.0000 0.0 0.0000 Aug-01-2013 Sep-01-2013 Oct-01-2013 lul-01-2008 Aug-01-2008 Sep-01-2008 Oct-01-2008

robust uncertainty estimate time series

single days exceeding 5 cm threshold ۲

most of the days around 5 cm threshold ۲

periods of increased uncertainty estimates

0

From raw phase to excess phase

$$L_{r}^{t} = \rho_{r}^{t} + c\delta_{r} - c\delta^{t} + \lambda N_{r}^{t} + \delta\rho_{r,atm}^{t} - \delta\rho_{r,ion}^{t} + \rho_{r,corr_{L}}^{t} + \epsilon_{L}$$

- $\rho_r^t \dots$ geometric distance between receiver and transmitter¹
- $c\delta_r, c\delta^t \dots$ transmitter and receiver clock biases²
- $\delta \rho_{r,atm}^t, \delta \rho_{r,ion}^t, \dots$ neutral atmosphere and ionosphere excess phase
- ρ^t_{r,corr}... modeled effects: relativistic effects, antenna offset & phase center corrections
- \bullet $\epsilon \dots$ unmodeled errors: thermal noise, local multipath, residual cycle slips, \dots
- $\lambda N_r^t \dots$ integer phase ambiguity

¹Distance b/t receiver at receive time t and transmitter at transmission time $t - \tau$, where τ is the signal travel time.

²The receiver clock bias at time t and the transmitter clock bias at time $t - \tau$.

Excess phase comparison

10.0

Courtesy: Spire

software:

 WEGC rOPS L1a processor for internal processing and conversion of external data

• input:

- WEGC orbits & clocks,
- raw occultation measurements,
- Ievel 1a products from:
 - $\rightarrow\,$ WEGC, EUMETSAT, UCAR, NSSC/NSMC, Spire

• things to consider:

 antenna offsets applied correctly, relativistic correction applied in POD, closed loop to open loop measurement combination, reference frames, orbit and clock interpolation ...

METOP-B; WEGC vs. EUMETSAT

- MetOp-B on May 15, 2013
- WEGC-rOPS/WEGC-Bernese vs. EUM-Yaros/EUM-Napeos
- mean difference < 1 mm
- standard deviation < 15 mm

GRACE-A; WEGC vs. UCAR

- GRACE-A July 2008
- WEGC-rOPS/WEGC-Bernese vs. UCAR-atmPhs/UCAR-Bernese
- mean difference < 2 mm
- standard deviation < 10 mm

GRACE-A; orbit degradation

- GRACE-A Jul 01-03, 2008 (left); 'ordinary' POD
- GRACE-A Aug 29-31, 2008 (right); 'degraded' POD
- ۲ comparison using WEGC-rOPS, but different orbit and clock input
- increased mean and stddev for 'degraded' case

15

mean

- median

- std dev

16% perc

- 84% perc

Summary and Outlook

- the rOPS with focus on the DSM-Geo modeling and ODP-L1a processing, comprising the LEO POD and excess phase processing, was introduced
- orbit and excess phase intercomparison acknowledge the quality of WEGC POD LEO orbit output
- the POD subsystem delivers reliable orbit and clock products including uncertainty estimates
- the **rOPS excess phases** show a high consistency compared to existing processing systems from EUMETSAT and UCAR.

next steps, ongoing ...

- analyze and characterize uncertainty of the excess phase processing
- processing of test month ensembles of FY-3C (JLOAC) and Spire (ESA study) data
- support the **reprocessing** of MetOp, CHAMP, GRACE, COSMIC data by **rOPS**

Thank you for your attention!

- Jäggi, A. (2007). "Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System". PhD Thesis. University Bern - AIUB.
- Kirchengast, G. (2018). Innovating GNSS and LEO occultations for weather and climate: three keys to next breakthroughs. Presentation at IGL-1 International Workshop 6–11 September 2018, Beijing, China.
- Kirchengast, G., M. Schwärz, J. Schwarz, B. Scherllin-Pirscher, C. Pock, J. Innerkofler, V. Proschek, A. K. Steiner, J. Danzer, F. Ladstädter, and U. Foelsche (2016). *The reference occultation processing system approach to interpret GNSS radio occultation as SI-traceable planetary system refractometer*. Presentation at OPAC-IROWG International Workshop 8–14 September 2016, Seggau/Leibnitz, Austria, available online at http://wegcwww.uni-graz.at/opacirowg2016 > Scient. Programme > Mon, Sep 12.
- Notarpietro, R. (2015). *EPS-SG Radio Occultation Level 1 Algorithm Theoretical Baseline Document*. EUM/LEO-EPSSG/SPE/14/743399. EUMETSAT.