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In a joint project of WEGC and the ROM SAF we investigated structural uncertainties
within the Level 2a (L2a) processing chain of the radio occultation (RO) retrieval
algorithms of two different processing systems, namely the GNSS Processing and Archive
Center (GPAC) implementation of the Radio Occultation Processing Package (ROPP) at DMI
used for the generation of the first ROM SAF Climate Data Record and the Reference
Occultation Processing System (rOPS) used for R&D processing by WEGC, with focus on
validation and climate studies. We understand L2a structural uncertainty in this context
as the part of the uncertainty emerging in retrieved profiles that derives from different
plausible algorithmic choices and numerical implementations in the L2a retrieval steps of
rOPS and GPAC/ROPP when we supply both processing systems with identical input data.
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Figure 1: Schemeb of the I:\]OPP and rOPS processing system and the input data sub-process flow and implementati()ns Of ROPP and
comparison steps between the two systems.
rOPS.

DAR-in rOPS Setup: 1) Refractivity profile
interpolated to a 100 m altitude grid. 2)
Retrieved (retr.) dry density filled up to 120 km
with a log-linear shifted at top of measurement
background profile (bgr.). 3) rOPS Pressure-
Integral 1n residual mode (diff. profile of retr.
minus bgr.), integration step 10 m.

Figure 2 shows, that only the initialization at
120 km causes differences and reaches a 1%
diff. at 60 km and becomes unbiased at 40 km.
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Figure 3: The top left panel shows the difference between refractivity ROPP
and refractivity RER-in rOPS for COSMIC 2008-07 globally and the five
latitudinal bands, the top right panel the same for METOP-A with IFS-od fc
initialization at top of measurement. The bottom panel shows the dry

pressure results for COSMIC (left) and METOP-A (right).

RER-in BAROCLIM-init rOPS Setup: Setup 1s
the same as for RER-in rOPS although step 2,
filling up of the BA up to 120 km 1s done with
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Figure 2: The left panel shows the difference between dry pressure ROPP and
dry pressure DAR-in rOPS for COSMIC 2008-07 globally and the five
latitudinal bands, the right panel the same for METOP-A.

RER-in rOPS Setup: 1) Interpolation of the
optimized bending angle (BA) profile to a co-
located forward modeled (IFS-od fc) impact
altitude grid, based on a 100 m altitude grid. 2)
Optimized (BA) profile filled up at top of
measurement with a bgr. co-located IFS-od fc
(ECMWEF forecast) BA profile without a shift
at top of profile. 3) rOPS Abel-Integral in
residual mode with 20 m integration step. 4)
rOPS Pressure-Integral same as in DAR-1n.
Figure 3 shows the initialization of the Abel-
Integral at 120 km with RER-in rOPS setup
causing a refractivity diff. and reaches a 1%
diff. at 60 km. The Pressure-Integral lowers
the 1% diff. level down to 45 km {for the dry
pressure and becomes unbiased below 40 km.
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the BAROCLIM BA from ROPP.
Figure 4 top left shows the initialization of the
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Abel-Integral at 120 km with BAROCLIM
causes 0,1 % diff. for COSMIC and becomes
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RER-in BAROCLIM

unbiased below 70 km. Remaining effect due to

refractivity (Fig. 4 top right) shows a 1 % diff. .
at 70 km because the BAROCLIM BA profile 1s 0
provided up approx. 90 km and thus filled up to
120 km with collocated MSIS-90 profile. The

Pressure-Integral 1 % level is at 55 km.
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Figure 4: The top left panel shows the difference between refractivity ROPP
and refractivity RER-in BAROCLIM-init rOPS for COSMIC 2008-07 globally and
the five latitudinal bands, the top right panel the same for METOP-A with a
BAROCLIM initialization at top of measurement. The bottom panel shows the

dry pressure results for COSMIC (left) and METOP-A (right).
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Figure 5: The top panel shows the BA correlation for measurement (left) and
background profiles (right). The bottom panel shows an example optimization
bending angle result for METOP-A.
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In Figure 5 the correlation matrices for the
measurement and background BA, used for the
dynamical statistical optimization in rOPS are
given (see [1] and [2]). An example result is
shown in the bottom panel of Fig. 5. The rOPS
statistical optimization reduces the noise of the
optimized BA significantly compared to the
ROPP optimized BA. Optimized and non-
optimized BA become almost the same at 65 km
for ROPP and at 60 km for rOPS. Since the
rOPS BA is smooth and not negative a bgr. BA
profile can be log-linear shifted at top of
measurement to a reasonable value. The ROPP
optimized BA 1s filled up to 120 km with a
BAROCLIM BA without any shift at top of
measurement.
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HAI-in rOPS Setup: 1) Interpolation of the BA

profile to a co-located forward modeled (IFS-od
fc) impact altitude grid, based on a 100 m altitude
grid. 2) Statistical optimization with a dynamic
weighting matrix calculated with estimated <x={—m =
uncertainty. Optimization
calculated up to min/max 70/80 km. The dynamic
optimiazation uses the bgr. BA as calculated in

observed and bgr.
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Figure 6: The top left panel shows the difference between optimized BA ROPP
and optimized BA HAI-in BAROCLIM-init rOPS for COSMIC 2008-07 globally
and the five latitudinal bands, the top right panel the same for METOP-A. The

second and third panel shows the same as for Figure 4.
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Figure 6: The top left panel shows the difference between optimized BA ROPP
and optimized BA HAI-in rOPS for COSMIC 2008-07 globally and the five
latitudinal bands, the top right panel the same for METOP-A. The second and
third panel shows the same as for Figure 3.

HAI-in BAROCLIM-init rOPS Setup: Setup 1s
the same as for HAI-in rOPS although step 2 and
3 uses a BAROCLIM BA profile as bgr. BA
profile for the optimization process and the
optimized BA filling up to 120 km.

Figure 6 (top panel) shows the optimzed BA diff.
with stronger median oscillation compared to the
HAI-in results. The oscillation 1s a result of the
used bgr. correlation 1n the rOPS BA
optimization. The 60 km to 80 km altitude range
are closer to the ROPP resulst compared to the
HAI-in results, since the same bgr. 1s used and
shows thus the difference on the different
processes. The Abel-Integral lowers the median
diff. altitude level to about 70 km and the
Pressure-Integral lowers the level again to about
50 km. Overall these results are closer to the
ROPP resuls compared to the HAI-in results, due
to the used BAROCLIM BA background.
Besides the initialization of the profiles, the used
background for the optimization affects the
retrieval results see the Sudden-Stratospheric-
Warming (SSW) event in Figure 7 and 8.

2009-02 COSMIC ROPP-L2a vs. IFS-od an 2009-02 COSMIC ROPP2rOPS-L1b=>rOPS-L2a vs. IFS-od an
1 1

2009-02 COSMIC ROPP-L2a vs. ROPP2rOPS-L1b=>rOPS-L2a
1

2009-02 COSMIC ROPP-L2a vs. ROPP2rOPS-L1b=>rOPS-L2a
1

80 ~

80 A

80 — 80 - =z
N “{\ 77 a1 ez - \\\ 3 =AY
Ay , Sm—— | ] __=-- 7L~ a2 _o-Z
b= 2 W4 " A = - W e AR Y & >z
70 1 2 $27 70 LT 47 P S 70 7} ~oh 701%
o L= - S ~ pis ¢ 257
e AT ? T ™ 5 st <L
w 27, LY ) S~ b > e ~ 88N
60 T, < — 60 s\ NS ~ g /,f,/_/ —————— 60 =~ ‘Nts\ 15‘”/// - *f 60 \;\é:\
-~ AN NS = A2 ,,z’ \\Q\
SooS / P \
f— ] —_ -~ A J f— ] ¢ -7 —_ Q¢
= ? 2 X N = 2
[0] 4041— GLO: Median [} 4031— GLO: Median 'y [J] 40 = GLO: Median ) 401— GLO: Median
3 = = GLO: Pctl 16%-84% 3 = = GLO: Pctl 16%-84% 3 = = GLO: Pctl 16%-84% 3 — = GLO: Pctl 16%-84%
s = TRO s —— TRO s — TRO s —— TRO
< 301 == TRO < 30 1 TRO < 30 - TRO < 30 1 TRO
NHM NHM NHM NHM
NHM NHM NHM NHM
20 7 — spm 20 7 — sHm 20 1 — sHMm 20 7 — sHm
== SHM — = SHM — = SHM — = SHM
10 4 = NHP 10 4 = NHP 10— NHP 10 4 = NHP
== NHP —= NHP — = NHP — = NHP
—— SHP —— SHP I\ = SHP —— SHP
04 == SHP 0+ == SHp = 04 == sHp 0+ == SHP
1 1 1 1
T T T T T T T T T T T T T T T T T T T T
—-60 —-40 -20 0 20 40 60 -60 —-40 -20 0 20 40 60 —-60 -40 -20 0 20 40 60 -60 —-40 -20 0 20 40 60

Dry temperature [K] Dry temperature [K]

Dry temperature [K] Dry temperature [K]

Figure 7: Dry temperature resuls for COSMIC 2009-02 with a SSW event in the Northern Hemisphere Polar (NHP). The first panel shows the ROPP vs. IFS-
od an, the second panel the HAI-in vs. IFS-od an, the third ROPP vs. HAI-in and the fourth ROPP vs. HAI-in BAROLIM-init dry temperature differences.
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Figure 8: The first panel shows the ROPP vs. MIPAS NHP 2009-02 dry tempearature differnces, the second panel HAI-in vs. MIPAS, the third panel ROPP vs.

SABER and the fourth HAI-in vs. SABER.



