

Atmospheric Temperature Trends from Observations – an Update and Recent Advances

A. K. Steiner¹, F. Ladstädter¹, the SPARC ATC Activity

¹Wegener Center for Climate and Global Change (WEGC), and Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, Austria

andi.steiner@uni-graz.at

WCRP/SPARC Activity on Temperature Changes

Activity on Atmospheric Temperature Changes & their Drivers (ATC)

The aim is to improve knowledge on atmospheric temperature variability and trends, and their uncertainty in climate data records (CDRs).

- Evaluation of atmospheric temperature observations
- With a focus on new high-vertically resolved RO observations
- Comparison with (chemistry) climate models and reanalyses
- Attribution of atmospheric temperature changes

<https://www.sparc-climate.org/activities/temperature-changes/>

GCOS Requirements for Climate Data Records

Aim: Ensure that the climate system is monitored sufficiently homogeneous, stable and accurate

Climate monitoring principles Fundamental Climate Data Records (FCDR & CDRs)

- traceability to reliable reference standards
- Iong-term stability
- homogeneity & reproducibility
- global and temporal coverage
- accuracy and adequate resolution in space and time

Essential Climate Variable (ECV) upper-air temperature

- horizontal resolution: 25 km in UT, 100 km in LS
- vertical resolution: 1 km UT, 2 km LS
- accuracy (root-mean-square) < 0.5 K</p>
- stability of 0.05 K per decade (GCOS 2016)

Comparison of Atmospheric Observations

Radiosondes, Microwave sounders, GNSS Radio Occultation

Radiosondes (RS): weather balloons, direct measurement

- + Long time series, high vertical resolution
- Sparse spatial coverage, instrumentation changes need homogenization

Comparison of Atmospheric Observations

Radiosondes, Microwave sounders, GNSS Radio Occultation

- Nadir sounders: Earth's radiance at MW or IR frequencies
 - + Long time series (40 years), good spatial coverage
 - Low vertical resolution layer average temperature, need sophisticated calibration

Radiosondes, Microwave sounders, GNSS Radio Occultation

GNSS RO: limb sounding, refraction of GPS signals

- + Long-term stability, high vertical resolution, good spatial coverage high consistency and quality in UTLS, no inter-mission calibration
- Short time series (2001 ongoing),
 influence of background field at high and lowest altitudes

Atmospheric Temperature Records

Layer average brightness temperatures

- Stratospheric Sounding Unit (SSU) merged timeseries
- Microwave Sounding Unit (MSU) and Advanced MSU timeseries

Vertically resolved temperatures

Radiosondes (RS), GNSS RO, ERA-Interim, ERA5

(MLS: Microwave Limb Sounder, SABERSounding of the Atmosphere using Broadband Emission Radiometry

Stratospheric Observations Compared to Models

UN

Geophysical Research Letters

FRONTIER ARTICLE

10.1029/2018GL078035

Key Points:

- There is substantial improvement in the comparison between modeled and observed stratospheric temperature trends over the satellite era
- Observations and models show weaker stratospheric cooling since ~1998 when ozone-depleting substances have been declining in the atmosphere
- Larger differences exist between modeled and observed stratospheric temperature trends at high latitudes partly due to internal variability

Revisiting the Mystery of Recent Stratospheric Temperature Trends

Amanda C. Maycock¹, William J. Randel², Andrea K. Steiner^{3,4}, Alexey Yu Karpechko⁵, John Christy⁶, Roger Saunders⁷, David W. J. Thompson⁸, Cheng-Zhi Zou⁹, Andreas Chrysanthou¹, N. Luke Abraham^{10,11}, Hideharu Akiyoshi¹², Alex T. Archibald^{10,11}, Neal Butchart¹³, Martyn Chipperfield¹, Martin Dameris¹⁴, Makoto Deushi¹⁵, Sandip Dhomse¹, Glauco Di Genova¹⁶, Patrick Jöckel¹⁴, Douglas E. Kinnison², Oliver Kirner¹⁷, Florian Ladstädter^{3,4}, Martine Michou¹⁸, Olaf Morgenstern¹⁹, Fiona O'Connor¹³, Luke Oman²⁰, Giovanni Pitari²¹, David A. Plummer²², Laura E. Revell^{23,24,25}, Eugene Rozanov^{24,26}, Andrea Stenke²⁴, Daniele Visioni^{16,21}, Yousuke Yamashita^{27,28}, and Guang Zeng¹⁹, David Comparison of the state of th

¹School of Earth and Environment, University of Leeds, Leeds, UK, ²Atmospheric Chemistry, Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, ³Wegener Center for Climate and Global Change, University of Graz, Graz, Austria, ⁴Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of

<https://doi.org/10.1029/2018GL078035>

Stratospheric Observations

SSU observations 1978-2006

- IR radiances, 3 channels
- Differences in observations from NOAA & UKMO and to model simulations
- SSU reprocessed CDRs (different corrections and merging methods, overlap periods needed)
- Smaller differences (right), still some discrepancies
- Vertical consistency (bottom) improved in both data sets, better for NOAA

Stratospheric Observations Compared to Models

Maycock et al. 2018

- Merged SSU-AMSU & (A)MSU observations compared to new chemistry climate models (CCMI)
- Substantially better agreement between observed and modeled stratospheric temperature trends than in former data version
- Due to improved observations while models have not changed much

Stratospheric Observations 1979–2018

- New SSU merged data SSU-MLS, SSU-AMSU
- MSU4-AMSU9
- Anomaly reference period 2002–2016
- Linear regression
- Global mean trends are consistent
- Magnitude of cooling increases with height
- Stratospheric trends

 -0.7 K/dec at 40-50 km
 -0.6 K/dec at 35-45 km
 -0.5 K/dec at 25-35 km
 -0.2 K/dec at 15-20 km

Stratospheric Observations 1979–2018

- New SSU merged data SSU-MLS, SSU-AMSU
- MSU4-AMSU9
- Split trends
- Weaker stratospheric cooling after ~1995 (ozone recovery) compared to 1979-1995 (ozone depletion)
- 1979-1995 & 1995-2018
 -1.2 & -0.4 K/dec SSU3
 -1.0 & -0.3 K/dec SSU2
 -0.8 & -0.3 K/dec SSU1
 -0.5 & 0 K/dec at MSU4

Tropospheric/Stratosph. Observations 1979-2018

MSU channels

- TLS: MSU4+AMSU9 TTS: MSU3+AMSU7 TMT: MSU2+AMSU5
- Anomaly reference period 2002–2016
- Linear regression
- Global mean trends are consistent
- Trends 1979-2018

 -0.21 K/dec for TLS
 +0.09 K/dec for TTS
 +0.15 K/dec for TMT

Atmospheric Variability Indices

- Multiple Linear Regression
- Variability Indices
- Solar
- ENSO
- Aerosol
- QBO

Stratospheric Trends 1979–2018

- SSU-MLS SSU-AMSU
- Latitude-resolved trends 1979-2018
- Multiple linear regression
- Largest at N high lats
- Smaller at S high lats
- Larger uncertainty at high latitudes due to larger variability

Tropospheric/Stratospheric Trends 1979-2018

MSU channels

- Latitude-resolved trends 1979-2018
- Multiple linear regression
- Larger uncertainty at high latitudes

Wegener Center

Overview on Layer Trends SSU & MSU

Vertical Trends 1980–2018 – Radiosondes

Wegener Center

Prelim.new radiosonde datasets: RISE (RICH) and RASE (Raobcore)

[Haimberger, University of Vienna] 17

Vertical Trends 2002-2018 - RS, ERA5, RO

Tropics 20°S–20°N

Global 70°S–70°N

ERA5, Vaisala radiosondes, RO

RO WEGC: https://doi.org/10.25364/WEGC/OPS5.6:2019.1; Schwärz et al. (2016), Angerer et al. (2017) 22

Vertically Resolved Trends – RO, RS 2002-2017

Wegener Center

RS Vaisala80/90/92

RISE

More on trends from RO in presentations by:

- Florian Ladstädter on climatological trends from RO (today)
- Poster on temperature impact of volcanic eruptions (by M. Stocker)
- Gottfried Kirchengast on atmospheric heat content from RO (today)
- Hallgeir Wilhelmsen on double tropopauses from RO (Monday)

Conclusions

- Layer average temperature data SSU & MSU substantially improved
- Atmospheric temperature changes observed
- Stratospheric cooling 1979–2018 of -0.2 to -0.8 K/dec from SSU & MSU4
- Weaker stratospheric cooling after 1995 (ozone recovery)
- Tropospheric warming 1979–2018 of ~0.15 K/dec from MSU observations
- RO provide information on vertically resolved trends with global coverage

