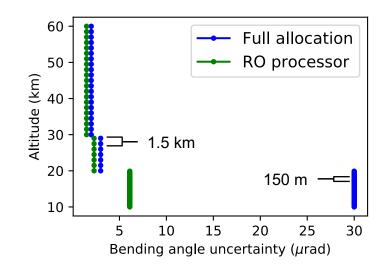


Towards near-real-time radio occultation processing operations for weather forecasting applications

Chad Galley, Byron Iijima, Yoaz Bar-Sever Jet Propulsion Laboratory, California Institute of Technology

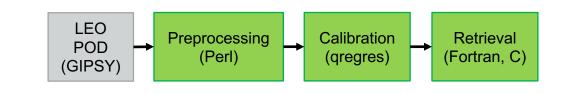

Sentinel-6/Jason-CS RO NRT processing at JPL

- JPL is responsible for processing Sentinel-6 RO occultations in near real-time (NRT)
 - EUMETSAT and ROM SAF are primary producers of the official non-time-critical (NTC) product

5

- JPL will produce a secondary/validation NTC product
- Important requirements to be met:
 - 17 min from time that instrument data is received to availability of NRT BUFR product on WMO GTS
 - Preprocessing3LEO POD8RO data processingDeliver products to NOAA
 - LEO POD accuracy:
 - Position: 10 cm/axis, RMS
 - Velocity: 0.1 mm/s, RMS, along track
 - 770 profiles per day (post-QC)
 - 94% availability over any one-month period

- Bending angle uncertainties:

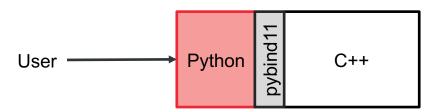


JPL <u>GPS</u> Occultation <u>Analysis</u> Software (GOAS)

- Used by JPL RO processing group to make science products for atmosphere/climate research
- Implements some of the original RO processing algorithms [e.g., see Hajj et al (2001)]
 - Fjeldbo's geometric optics retrieval algorithm
 - Standard Abel inversion
 - No statistical optimization used for bending angle retrieval
- Processes multi-mission data including (but not limited to):
 - CHAMP
 SAC-C
 KOMPSAT-5
 - COSMIC PAZ
 - GRACE GRACE-FO
 - TerraSAR-X
- Features:
 - Handles occultations tracked with closed-loop, open-loop, or both
 - Calibrates links using zero-, single-, or double-differencing
 - Implements the canonical transform for low-altitude bending angle retrieval

JPL <u>GPS</u> Occultation <u>Analysis</u> Software (GOAS)

- Architecture:
 - Perl
 - Fortran 77 & 90
 - A tiny bit of C
- Dependencies:
 - JPL GIPSY libraries and POD software
 - JPL's gregres program to calibrate occultation and, if needed, clock and ground reference links
 - fftw2
- Limitations of GOAS for Sentinel-6 NRT processing
 - GPS only
 - LEO POD solutions provided in separate process
 - Serial processing
 - File-based processing
 - Depends on GIPSY software libraries GIPSY is no longer maintained nor supported
- <u>Conclusion</u>: A new RO processing software is needed at JPL to meet Sentinel-6 NRT processing requirements



JPL GNSS <u>R</u>adio <u>O</u>ccultation <u>A</u>tmospheric <u>R</u>etrieval <u>S</u>oftware (ROARS)

- Implements GOAS algorithms with flexibility to include more (e.g., phase matching)
- Supports multi-mission processing of current and future missions including:
 - Daily processing of GeoOptics data
 - NRT and daily processing of Sentinel-6 data
 - Daily processing of COSMIC-2 once data is publicly available
- Features:
 - Processes occultations from multiple GNSS constellations
 - Parallel processing of retrievals
 - Currently handles occultations tracked with open-loop; others planned for inclusion
 - Currently calibrates links using zero-differencing; others planned for inclusion
 - Implements the canonical transform for low-altitude bending angle retrieval
 - Interactive and scriptable to handle operational processing, trouble-shooting, debugging, algorithm development, receiver software assessments,...

JPL GNSS <u>Radio Occultation Atmospheric Retrieval</u> <u>Software (ROARS)</u>

- Architecture:
 - C++ for speed and organization of data into classes/types
 - Python3 for user interface (interactive and scripts)
 - pybind11 library for exposing C++ functionality to Python

- Dependencies:
 - JPL GCORE software libraries
 - JPL's RTGx software for LEO and GNSS POD
 - automate JPL Python package for date/time handling, automation & system tasks (incl. with ROARS)
 - pybind11 (incl. with ROARS)
 - fftw3
- Easy to install -- uses CMake build system from a Python setup.py script

JPL GNSS ROARS: Objects

• Classes to hold and manipulate data:

Earth	Spacecraft	CanonicalTransform
Orbit	Link	Refractivity
Clock	BendingAngle	NavBits
Attitude	GeometricOptics	

- Classes to facilitate mathematical operations on data (roars.mathlib)
 - Smoothers: LocalPolyRegression, RunningMean, RunningMedian,...
 - Interpolators: LinearPoly, CubicSpline, PiecewiseConstant, Poly,...
 - Fitters: LinearLeastSquares, PolyLeastSquares,...
 - Differentiators: FiniteDifference, NoiseRobust,...
 - Integrators: Riemann, Trapezoidal, Simpson, GaussChebyshev,...
- Classes to manage processing:

Olog, OccultationManager, ProcessingManager

- Python classes to facilitate easy file I/O, object manipulations, and visualization: LinkObjects, SpacecraftObjects, MeasObjects, BendingAngleObjects,...
- Highly configurable
 - Accommodates all GNSS signal frequencies
 - Multiple reference ellipsoids available (WGS84, GRS80, user-defined,...)
 - Multiple gravity models available (EGM2010, OSU91a,...)
 - Processing strategy customized by an input tree

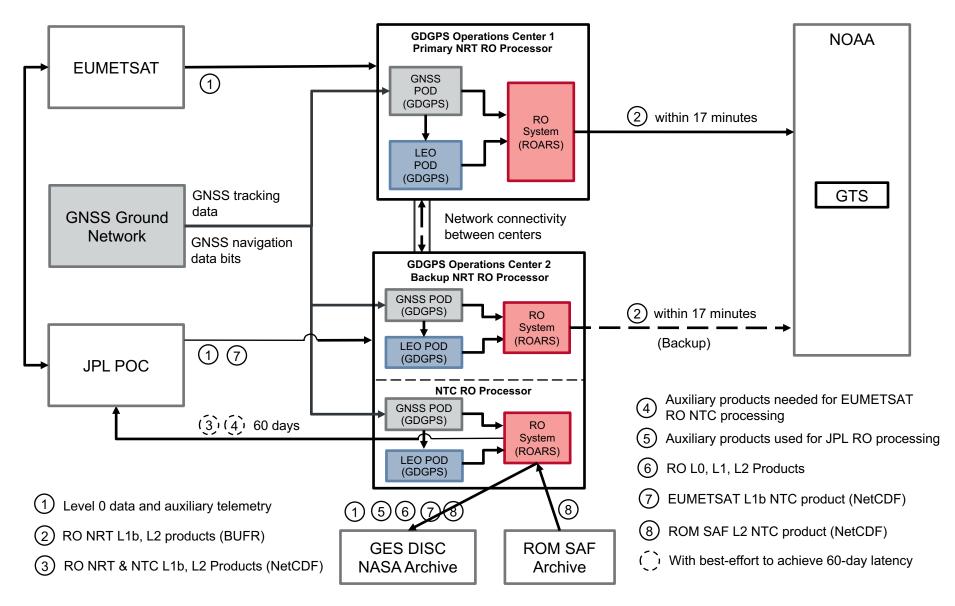
JPL GNSS ROARS: Flexible tree-based processing

- Tree-driven automated processing
 - One input file containing all input parameters, configurations, server/directory information, etc

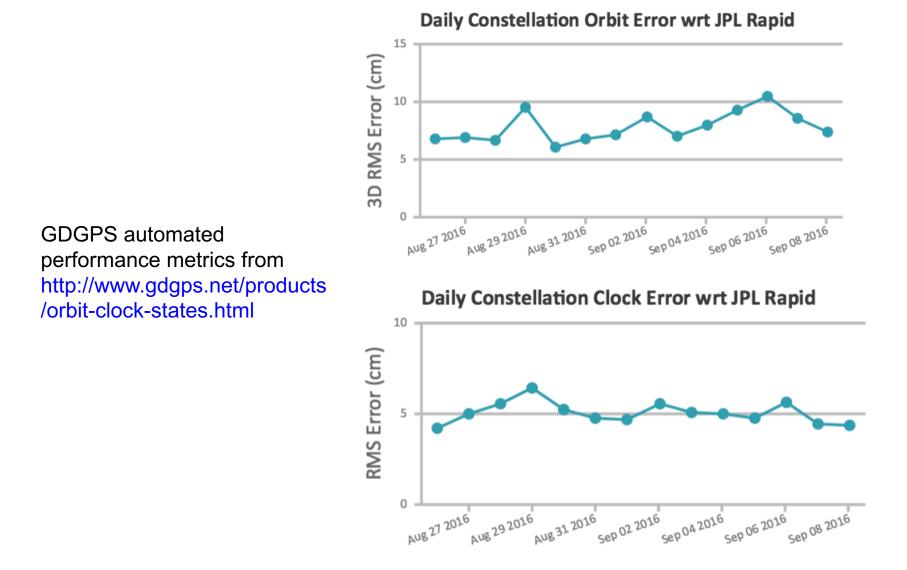
```
BendingAngle:
    L1:
        FineGrained:
            Smoother:
                                      LocalPolyRegression
                Name:
                Smooth:
                                      3
                    Degree:
                                      1.0
                    Window:
                Decimate:
                                      0.32
                    Interval:
                                      500 # Number of points, not seconds
                    Begin:
            StaticSpacecraft:
                                      Transmitter
            GeometricOptics:
                MaxImpactParameter:
                                              # [m]
                                      120e3
                MaxIterations:
                                      30
            CanonicalTransform:
                LimbHeight:
                                      0.0
                ScreenInterval:
                                      1.0 # [m]
        CoarseGrained:
            Smoother:
                                      LocalPolyRegression
                Name:
                Smooth:
                                      3
                    Degree:
                    Window:
                                      2.0
                Decimate:
                                      0.32
                    Interval:
                                      500 # Number of points, not seconds
                    Begin:
            StaticSpacecraft:
                                      <BendingAngle.L1.FineGrained.StaticSpacecraft>
            GeometricOptics:
                                      <BendingAngle.L1.FineGrained.GeometricOptics>
    L2:
        CoarseGrained:
                                      <BendingAngle.L1.CoarseGrained>
```

JPL GNSS ROARS: Flexible tree-based processing

- Tree-driven automated processing
 - One input file containing all input parameters, configurations, server/directory information, etc

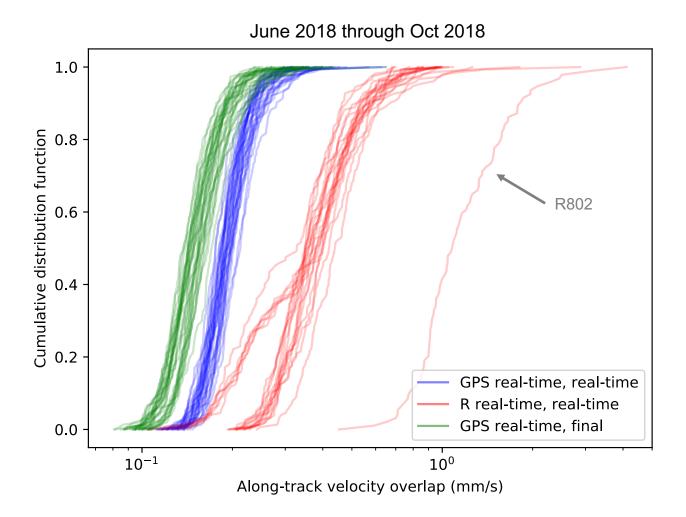

```
BendingAngle:
   L1:
        FineGrained:
            Smoother:
                                      LocalPolyRegression
                Name:
                Smooth:
                                      3
                    Degree:
                                      1.0
                    Window:
                Decimate:
                    Interval:
                                      0.32
                                      500 # Number of points, not seconds
                    Begin:
            StaticSpacecraft:
                                      Transmitter
            GeometricOptics:
                MaxImpactParameter:
                                              # [m]
                                      120e3
                MaxIterations:
                                      30
        CoarseGrained:
            Smoother:
                                      LocalPolyRegression
                Name:
                Smooth:
                                      3
                    Degree:
                    Window:
                                      2.0
                Decimate:
                                      0.32
                     Interval:
                    Begin:
                                      500 # Number of points, not seconds
            StaticSpacecraft:
                                      <BendingAngle.L1.FineGrained.StaticSpacecraft>
            GeometricOptics:
                                      <BendingAngle.L1.FineGrained.GeometricOptics>
    L2:
        CoarseGrained:
                                      <BendingAngle.L1.CoarseGrained>
```

JPL GNSS ROARS: Flexible tree-based processing

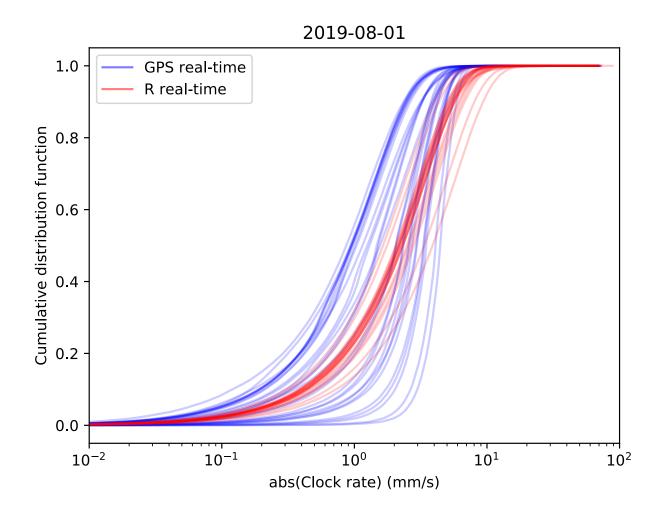

- Tree-driven automated processing
 - One input file containing all input parameters, configurations, server/directory information, etc

BendingAngle: L1:		
FineGrained:		
Smoother:		
Name:	LocalPolyRegression	
Smooth:		
Degree:	3	
Window:	1.0	
Decimate:		
Interval:	0.32	
Begin:	500 # Number of points, not seconds	
StaticSpacecraft:	Transmitter	
CanonicalTransform:		
LimbHeight:	0.0	
ScreenInterval:	1.0 # [m]	
CoarseGrained:		
Smoother:		
Name:	LocalPolyRegression	
Smooth:	· ·	
Degree:	3	
Window:	2.0	
Decimate:		
Interval:	0.32	
Begin:	500 # Number of points, not seconds	
StaticSpacecraft:	<bendingangle.l1.finegrained.staticspacecraft></bendingangle.l1.finegrained.staticspacecraft>	
GeometricOptics:	<bendingangle.l1.finegrained.geometricoptics></bendingangle.l1.finegrained.geometricoptics>	
L2:		
CoarseGrained:	<bendingangle.l1.coarsegrained></bendingangle.l1.coarsegrained>	

S-6/J-CS RO NRT processing architecture & data flow



Real-time GPS POD at JPL GDGPS Operations Centers



12 jpl.nasa.gov

GNSS orbital velocity overlaps

GNSS real-time clock bias rates

Summary

- New GNSS RO processing software (ROARS) being developed at JPL
 - Leverages time-tested algorithms from JPL's GOAS with the flexibility to add more
- ROARS:
 - supports both NRT processing for weather applications and daily processing for science applications
 - is flexible for building mission-specific processing packages
 - processes occultations from multiple GNSS constellations
 - will be implemented with parallelization in a hot-redundant operating environment to support Sentinel-6 high-availability and timeliness requirements
- RO NRT processing at JPL utilizes:
 - JPL's RTGx software for LEO POD
 - JPL's GDGPS operational service for real-time GNSS POD products, navigation data bits, and high-availability operational environment
- ROARS tested operationally processing GeoOptics data
- Sentinel-6/Jason-CS RO products generated by the JPL ROARS system:
 - NRT L1b and L2 products distributed on GTS in BUFR format
 - NTC L1 and L2 products will be available from ROM SAF and NASA's GES DISC archive
 - See the "Sentinel-6 Project GNSS-RO Product Description Document"

jpl.nasa.gov