

The Radio Occultation Processing Package (ROPP) Applications Module User Guide

Version 11.0

31 December 2021

The ROM SAF Consortium

Danish Meteorological Institute (DMI) European Centre for Medium-Range Weather Forecasts (ECMWF) Institut d'Estudis Espacials de Catalunya (IEEC) Met Office (MetO)

Document Author Table

	Name	Function	Date	Comment
Prepared by:	I. Culverwell	ROM SAF Project Team	31 December 2021	
Reviewed by:	O. Lewis	ROM SAF Project Team	31 December 2021	
Approved by:	K. B. Lauritsen	ROM SAF Project Manager	31 December 2021	

Document Change Record

Issue/Revision	Date	Ву	Description	
Version 8.1	31 Dec 2015	IC	First version, for update to eighth release of ROPP (v8.1)	
Version 9.0	28 Feb 2017	IC	Second version, for ninth full release of ROPP (v9.0)	
Version 9.1	30 Jun 2019	IC	Update to ninth full release (v9.1)	
Version 10.0	30 Sep 2020	IC	Tenth full release (v10.0)	
Version 11.0	31 Dec 2021	IC	Eleventh full release (v11.0). Changes from ROPP-10.0 in — see Change Log (SAF/ROM/METO/SRN/ROPP/018) details.	

ROM SAF

The Radio Occultation Meteorology Satellite Application Facility (ROM SAF) is a decentralised processing centre under EUMETSAT which is responsible for operational processing of radio occultation (RO) data from the Metop and Metop-SG satellites and radio occultation data from other missions. The ROM SAF delivers bending angle, refractivity, temperature, pressure, humidity, and other geophysical variables in near real-time for NWP users, as well as reprocessed Climate Data Records (CDRs) and Interim Climate Data Records (ICDRs) for users requiring a higher degree of homogeneity of the RO data sets. The CDRs and ICDRs are further processed into globally gridded monthly-mean data for use in climate monitoring and climate science applications.

The ROM SAF also maintains the Radio Occultation Processing Package (ROPP) which contains software modules that aid users wishing to process, quality-control and assimilate radio occultation data from any radio occultation mission into NWP and other models.

The ROM SAF Leading Entity is the Danish Meteorological Institute (DMI), with Cooperating Entities: i) European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, United Kingdom, ii) Institut D'Estudis Espacials de Catalunya (IEEC) in Barcelona, Spain, and iii) Met Office in Exeter, United Kingdom. To get access to our products or to read more about the ROM SAF please go to: http://www.romsaf.org.

Intellectual Property Rights

All intellectual property rights of the ROM SAF products belong to EUMETSAT. The use of these products is granted to every interested user, free of charge. If you wish to use these products, EUMETSAT's copyright credit must be shown by displaying the words "copyright (year) EUMETSAT" on each of the products used.

Contents

1	Intr	oduction	1
	1.1	Purpose of this document	1
	1.2	Applicable and reference documents	1
		1.2.1 Applicable documents	1
		1.2.2 Reference documents	1
	1.3	Acronyms and abbreviations	2
	1.4	Definitions, levels and types	4
	1.5	Structure of this document	5
2	RO	PP	6
	2.1	ROPP introduction	6
	2.2	User documentation	7
	Refe	erences	8
2	DOI	DD Applications, Transposed Height (TDH) diagnostic	0
3	2 1		9 10
	3.1 2.0		11
	J.∠ 2.2		12
	5.5 2.4		15
	Э.4 Э.г		10
	3.5		10
	3.0		17
	3.7	Examples of the TPH diagnostics	18
	Refe	erences	18
4	RO	PP Applications: Planetary Boundary Layer Height (PBLH) diagnostic	21
	4.1	Bending angle	22
	4.2	Refractivity	24
	4.3	Dry temperature	25
	4.4	Temperature	26
	4.5	Specific humidity	26
	4.6	Relative humidity	26
	4.7	Calculating the PBLH diagnostics	27
	4.8	Examples of the PBLH diagnostics	27
	Refe	erences	28

Α	Insta	talling and using ROPP 31				
	A.1	1 Software requirements				
	A.2	2 Software release notes				
	A.3	Third-party packages	31			
		A.3.1 NetCDF (optional in principle)	32			
		A.3.2 BUFR (optional)	33			
		A.3.3 GRIB (optional) - either GRIB_API or ecCodes	34			
		A.3.4 SOFA (optional)	34			
		A.3.5 RoboDoc (optional)	35			
		A.3.6 autoconf and automake (optional)	35			
	A.4	BUILDPACK script	35			
	A.5	Building and installing ROPP manually	36			
		A.5.1 Unpacking	37			
		A.5.2 Configuring	37			
		A.5.3 Compiling	38			
		A.5.4 Installing	38			
		A.5.5 Cleaning up	39			
	A.6	Linking	39			
	A.7	Testing	40			
		A.7.1 ropp_utils	40			
		A.7.2 ropp_io	40			
		A.7.3 ropp_pp	41			
		A.7.4 ropp_apps	42			
		A.7.5 ropp_fm	42			
		A.7.6 ropp_1dvar	42			
	A.8	Troubleshooting	43			
в	ropr	p_apps program files	44			
	11					
С	ROF	PP extra diagnostic data	46			
	C.1	ropp_io_addvar	46			
	C.2	PPDiag	47			
	C.3	ropp_fm_bg2ro	47			
	C.4	VarDiag	47			
D	ROF	PP user documentation	49			
Е	Autł	hors	54			
F	Сор	pyrights	56			

1 Introduction

1.1 Purpose of this document

This document, the ROPP_APPS User Guide ([RD.2d]), describes the applications module of the Radio Occultation Processing Package (ROPP). This module currently contains tools to calculate tropopause height and planetary boundary layer height from profiles of radio occultation data.

1.2 Applicable and reference documents

1.2.1 Applicable documents

The following documents have a direct bearing on the contents of this document.

- [AD.1] Proposal for the Third Continuous Development and Operations Phase (ROM SAF CDOP-3) March 2017 – February 2022, as endorsed by Council 7th December 2016
- [AD.2] Product Requirements Document (PRD). SAF/GRAS/METO/MGT/PRD/001

[AD.3] ROPP User Licence. SAF/ROM/METO/LIC/ROPP/002

1.2.2 Reference documents

The following documents provide supplementary or background information and could be helpful in conjunction with this document.

[RD.1] ROPP Architectural Design Document (ADD). SAF/ROM/METO/ADD/ROPP/001

[RD.2] The ROPP User Guides:

- [RD.2a] Overview. SAF/ROM/METO/UG/ROPP/001
- [RD.2b] ROPP_IO. SAF/ROM/METO/UG/ROPP/002
- [RD.2c] ROPP_PP. SAF/ROM/METO/UG/ROPP/004
- [RD.2d] ROPP_APPS. SAF/ROM/METO/UG/ROPP/005
- [RD.2e] ROPP_FM. SAF/ROM/METO/UG/ROPP/006
- [RD.2f] ROPP_1DVAR. SAF/ROM/METO/UG/ROPP/007
- [RD.2g] ROPP_UTILS. SAF/ROM/METO/UG/ROPP/008

1.3 Acronyms and abbreviations

AC	Analysis Correction (NWP assimilation technique)		
ΑΡΙ	Application Programming Interface		
Beidou	Chinese GNSS navigation system. Beidou-2 also known as COMPASS		
BG	Background		
BUFR	Binary Universal Format for data Representation		
CASE	Computer Aided Software Engineering		
CDR	Climate Data Record		
CF	Climate and Forecasts (CF) Metadata Convention		
CGS	Core Ground Segment		
СНАМР	Challenging Mini–Satellite Payload		
CLIMAP	Climate and Environment Monitoring with GPS-based Atmospheric Profiling (EU)		
СМА	Chinese Meteorological Agency		
C/NOFS	Communications/Navigation Outage Forecasting System (US)		
CODE	Centre for Orbit Determination in Europe		
COSMIC	Constellation Observing System for Meteorology, Ionosphere & Climate		
DMI	Danish Meteorological Institute		
DoD	US Department of Defense		
EC	European Community		
ECF	Earth–centred, Fixed coordinate system		
ECI	Earth-centred, Inertial coordinate system		
ECMWF	The European Centre for Medium-Range Weather Forecasts		
EGM-96	Earth Gravity Model, 1996. (US DoD)		
EOP	Earth Orientation Parameters		
EPS	EUMETSAT Polar System		
ESA	European Space Agency		
ESTEC	European Space Research and Technology Centre (ESA)		
EU	European Union		
EUMETSAT	European Organisation for the Exploitation of Meteorological Satellites		
EUMETCast	EUMETSAT 's primary dissemination mechanism for the NRT delivery of satellite data		
	and products		
FY-3C/D	GNSS radio occultation receivers (CMA)		
GALILEO	European GNSS constellation project (EU)		
GCM	General Circulation Model		
GFZ	GFZ Helmholtz Centre (Germany)		
GLONASS	Global Navigation Satellite System (Russia)		
GNOS	GNSS Occultation Sounder (China)		
GNSS	Global Navigation Satellite Systems (generic name for GPS, GLONASS, GALILEO and Beidou)		
GPL	General Public Licence (GNU)		
GPS	Global Positioning System (US)		

GPS/MET	GPS Meteorology experiment, onboard Microlab-1 (US)		
GPSOS	Global Positioning System Occultation Sensor (NPOESS)		
GRACE-A/B	Gravity Recovery and Climate Experiment (US/Germany)		
GRACE-FO	GRACE Follow-on experiment (US/Germany)		
GRAS	GNSS Receiver for Atmospheric Sounding (onboard Metop)		
GUI	Graphical User Interface		
GTS	Global Telecommunications System		
HIRLAM	High Resolution Limited Area Model		
ICDR	Intermediate Climate Data Record		
IERS	International Earth Rotation Service		
ITRF	International Terrestrial Reference Frame		
ITRS	International Terrestrial Reference System		
IGS	International GPS Service		
ISRO	Indian Space Research Organisation		
JPL	Jet Propulsion Laboratory (NASA)		
KMA	Korean Meteorological Agency		
KOMPSAT–5	GNSS radio occultation receiver (KMA)		
LAM	Local Area Model (NWP concept)		
LEO	Low Earth Orbited		
LGPL	Lesser GPL $(q.v.)$		
LOS	Line Of Sight		
Megha-	Tropical water cycle (and RO) experiment (India/France)		
Megha- Tropiques	Tropical water cycle (and RO) experiment (India/France)		
Megha- Tropiques METOP	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT)		
Megha- Tropiques METOP MKS	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second		
Megha- Tropiques METOP MKS MPEF	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT)		
Megha- Tropiques METOP MKS MPEF MSL	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level		
Megha- Tropiques METOP MKS MPEF MSL N/A	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US)		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US)		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US)		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique)		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI Operational	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique) Team responsible for the handling of GRAS data and the delivery of meteorological		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI Operational ROM SAF	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique) Team responsible for the handling of GRAS data and the delivery of meteorological products during the operational life of the instrument		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI Operational ROM SAF PAZ	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique) Team responsible for the handling of GRAS data and the delivery of meteorological products during the operational life of the instrument Spanish Earth Observation Satellite, carrying a Radio Occultation Sounder		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI Operational ROM SAF PAZ PFS	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique) Team responsible for the handling of GRAS data and the delivery of meteorological products during the operational life of the instrument Spanish Earth Observation Satellite, carrying a Radio Occultation Sounder Product Format Specifications		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI OI Operational ROM SAF PAZ PFS PMSL	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique) Team responsible for the handling of GRAS data and the delivery of meteorological products during the operational life of the instrument Spanish Earth Observation Satellite, carrying a Radio Occultation Sounder Product Format Specifications Pressure at Mean Sea Level		
Megha- Tropiques METOP MKS MPEF MSL N/A NASA NMS NOAA NPOESS NRT NWP OI Operational ROM SAF PAZ PFS PMSL POD	Tropical water cycle (and RO) experiment (India/France) Meteorological Operational polar satellites (EUMETSAT) Meter, Kilogram, Second Meteorological Products Extraction Facility (EUMETSAT) Mean Sea Level Not Applicable or Not Available National Aeronautics and Space Administration (US) National Meteorological Service National Oceanic and Atmospheric Administration (US) National Polar-orbiting Operational Environmental Satellite System (US) Near Real Time Numerical Weather Prediction Optimal Interpolation (NWP assimilation technique) Team responsible for the handling of GRAS data and the delivery of meteorological products during the operational life of the instrument Spanish Earth Observation Satellite, carrying a Radio Occultation Sounder Product Format Specifications Pressure at Mean Sea Level Precise Orbit Determination		

RO	Radio Occultation		
ROC	Radius Of Curvature		
ROM SAF	The EUMETSAT Satellite Application Facility responsible for operational processing		
	of radio occultation data from the Metop satellites. Leading entity is DMI; collabo-		
	rating entities are UKMO, ECMWF and IEEC.		
ROPP	Radio Occultation Processing Package		
ROSA	Radio Occultation Sounder for Atmosphere (on OceanSat-2 and Megha-Tropiques)		
RMDCN	Regional Meteorological Data Communication Network		
SAC–C	Satelite de Applicaciones Cientificas – C		
SAF	Satellite Application Facility (EUMETSAT)		
SAG	Scientific Advisory Group		
SI	Système International (The MKS units system)		
ΤΑΙ	Temps Atomique International (International Atomic Time)		
TanDEM–X	German Earth Observation Satellite, carrying a Radio Occultation Sounder		
твс	To Be Confirmed		
TBD	To Be Determined		
TDB	Temps Dynamique Baricéntrique (Barycentric Dynamical Time)		
TDT	Temps Dynamique Terrestre (Terrestrial Dynamical Time)		
TDS	True-of-date coordinate system		
TerraSAR–X	German Earth Observation Satellite, carrying a Radio Occultation Sounder		
ТР	Tangent Point		
UKMO	United Kingdom Meteorological Office		
UML	Unified Modelling Language		
UT1	Universal Time-1 (proportional to the rotation angle of the Earth)		
UTC	Universal Time Coordinated		
VAR	Variational analysis; 1D, 2D, 3D or 4D versions (NWP data assimilation technique)		
VT	Valid or Verification Time		
WEGC	Wegener Center for Climate and Global Change		
WGS-84	World Geodetic System, 1984. (US DoD)		
WMO	World Meteorological Organization		
WWW	World Weather Watch (WMO)		

1.4 Definitions, levels and types

RO data products from the Metop, Metop-SG and Sentinel-6 satellites and RO data from other missions are grouped in *data levels* (Level 0, 1, 2, or 3) and *product types* (NRT, Offline, NTC, CDR, or ICDR). The data levels and product types are defined below¹. The lists of variables should not be considered as the complete contents of a given data level, and not all data may be contained in a given data level.

Data levels:

¹Note that the level definitions differ partly from the WMO definitions: http://www.wmo.int/pages/prog/sat/dataandproducts_en.php.

- Level 0: Raw sounding, tracking and ancillary data, and other GNSS data before clock correction and reconstruction;
- Level 1A: Reconstructed full resolution excess phases, total phases, pseudo ranges, SNRs, orbit information, I, Q values, NCO (carrier) phases, navigation bits, and quality information;
- Level 1B: Bending angles and impact parameters, tangent point location, and quality information;
- Level 2: Refractivity, geopotential height, "dry" temperature profiles (Level 2A), pressure, temperature, specific humidity profiles (Level 2B), surface pressure, tropopause height, planetary boundary layer height (Level 2C), ECMWF model level coefficients (Level 2D), quality information;
- Level 3: Gridded or resampled data, that are processed from Level 1 or 2 data, and that are provided as, e.g., daily, monthly, or seasonal means on a spatiotemporal grid, including metadata, uncertainties and quality information.

Product types:

- NRT product: Data product delivered less than: (i) 3 hours after measurement (ROM SAF Level 2 for EPS); (ii) 150 min after measurement (ROM SAF Level 2 for EPS-SG Global Mission); (iii) 125 min after measurement (ROM SAF Level 2 for EPS-SG Regional Mission); item
- Offline and NTC products: Data product delivered from about 5 days to up to 6 months after measurement, depending on the applicable requirements. The evolution of this type of product is driven by new scientific developments and subsequent product upgrades;
- **CDR**: Climate Data Record generated from a dedicated reprocessing activity using a fixed set of processing software². The data record covers an extended time period of several years (with a fixed end point) and constitutes a homogeneous data record appropriate for climate usage;
- ICDR: An Interim Climate Data Record (ICDR) regularly extends in time a (Fundamental or Thematic) CDR using a system having optimum consistency with and lower latency than the system used to generate the CDR³.

1.5 Structure of this document

Section 2 briefly describes ROPP and its documentation. Section 3 describes the theory and the practical implementation of the various tropopause height (TPH) diagnostics in ROPP. These are available for bending angles, refractivities, dry temperatures and 'wet' temperatures. Section 4 does the same for the planetary boundary layer height (PBHL) diagnostics in ROPP. These are available for bending angles, refractivities, dry temperatures, specific humidities and relative humidities.

Appendices give brief instructions on how to build ROPP, list the files in the ropp_apps module, list the 'extra diagnostic data' that is produced by the various ROPP tools (usually by means of a '-d' option), record useful ROPP and other ROM SAF documentation, list the principal authors of ROPP, and state the copyright information that applies to various parts of the code.

²(i) GCOS 2016 Implementation Plan; (ii) http://climatemonitoring.info/home/terminology/.

³ http://climatemonitoring.info/home/terminology (the ICDR definition was endorsed at the 9th session of the joint CEOS/CGMS Working Group Climate Meeting on 29 March 2018 (http://ceos.org/meetings/wgclimate-9)).

2 ROPP

2.1 ROPP introduction

The aim of ROPP is

... to provide users with a comprehensive software package, containing all necessary functionality to pre-process RO data from Level 1a (Phase), Level 1b (Bending Angle) or Level 2 (Refractivity) files, plus RO-specific components to assist with the assimilation of these data in NWP systems.

ROPP is a collection of software modules (provided as source code), supporting data files and documentation, which aids users wishing to assimilate radio occultation data into their NWP models. It was originally designed to process data from the GRAS instrument on Metop-A and B, but the software should be adaptable enough to handle data from any other GNSS-LEO radio occultation mission.

The software is distributed in the form of a source code library written in Fortran 90. ROPP is implemented using Fortran modules and derived types, enabling the use of object oriented techniques such as the overloading of routines. The software is split into several modules. Figure 2.1 illustrates the interrelationships between each module. Users may wish to integrate a subset of ROPP code into their own software applications, individually linking modules to their own code. These users may not require the complete ROPP distribution package. Alternatively, users may wish to use the executable tools provided as part of each module as stand-alone applications for RO data processing. These users should download the complete ROPP release.

ROPP contains support for a generic data format for radio occultation data (ropp_io), one- and twodimensional forward models (ropp_fm), routines for the implementation of 1D-Var retrievals, including quality control routines (ropp_1dvar), pre-processing and wave optics propagator routines (ropp_pp), and various standalone applications (ropp_apps). Utility routines used by some or all of the ROPP modules are provided in an additional module (ropp_utils). This structure (Figure 2.1) reflects the various degrees of interdependence of the difference ROPP modules. For example, the subroutines and functions in ropp_io and ropp_fm modules are mutually indepdendent, whereas routines in ropp_1dvar depend on ropp_fm. Sample standalone implementations of ropp_pp, ropp_fm and ropp_1dvar (which then require ropp_io for file interfaces, reading and writing data) are provided with those modules and documented in the relevant User Guides. ROPP_APPS User Guide

Figure 2.1: The **modules** and *tools* within ROPP-11.0. The module at the head of an arrow depends directly on the module at its tail.

2.2 User documentation

A full list of user documentation is provided in Tables D.1, D.2 and D.4. These documents are available via the ROM SAF website at http://www.romsaf.org.

The ROPP distribution website has a Release Notes file in the root directory which provides a 'Quick Start' guide to the package. This should be read before downloading the package files. Detailed build and install instructions are contained in the release notes of the individual ROPP software modules.

Module-specific user guides for the utilities (ROM SAF, 2021f), input/output (ROM SAF, 2021d), pre-processor (ROM SAF, 2021e), forward model (ROM SAF, 2021c), 1D–Var (ROM SAF, 2021a) and applications (ROM SAF, 2021b) modules describe the algorithms and routines used in those modules. These provide the necessary background and descriptions of the ROPP software for users to process radio

occultation data from excess phase to bending angle or refractivity, to forward model background fields to refractivity and bending angle profiles, to simulate the propagation of GNSS radio waves through idealised atmospheric refractivity structures, and to perform 1D–Var retrievals of radio occultation data, as well as advice on how to implement ROPP in their own applications.

More detailed Reference Manuals are also available for each module for users wishing to write their own interfaces to the ROPP routines, or to modify the ROPP code. These are provided in the associated module distribution files.

Further documentation can be downloaded from the ROPP section of the ROM SAF web site http://www.romsaf.org. The full user documentation set is listed in Table D.1.

In addition to these PDF documents, most of the stand-alone application programs have Unix-style 'man page' help files which are installed during the build procedures. All such programs have summary help information which is available by running the command with the -h switch.

Any comments on the ROPP software should in the first instance be raised via the ROM SAF Helpdesk at http://www.romsaf.org.

References

- ROM SAF, The Radio Occultation Processing Package (ROPP) 1D–Var module User Guide, SAF/ROM/METO/UG/ROPP/007, Version 11.0, 2021a.
- ROM SAF, The Radio Occultation Processing Package (ROPP) Applications module User Guide, SAF/ROM/METO/UG/ROPP/005, Version 11.0, 2021b.
- ROM SAF, The Radio Occultation Processing Package (ROPP) Forward model module User Guide, SAF/ROM/METO/UG/ROPP/006, Version 11.0, 2021c.
- ROM SAF, The Radio Occultation Processing Package (ROPP) Input/Output module User Guide, SAF/ROM/METO/UG/ROPP/002, Version 11.0, 2021d.
- ROM SAF, The Radio Occultation Processing Package (ROPP) Pre-processor module User Guide, SAF/ROM/METO/UG/ROPP/004, Version 11.0, 2021e.
- ROM SAF, The Radio Occultation Processing Package (ROPP) Utilities module User Guide, SAF/ROM/METO/UG/ROPP/008, Version 11.0, 2021f.

3 ROPP Applications: Tropopause Height (TPH) diagnostic

The ROPP applications module (ropp_apps) includes the tool ropp_apps/tools/ropp_apps_tph_tool to diagnose the tropopause height (TPH) from profiles of bending angle, refractivity, dry temperature or (wet) temperature. These are, respectively, level 1b, 2a, 2a and 2b quantities. In each case, the TPH is diagnosed as the height of a kink at the appropriate vertical co-ordinate: impact parameter, geometric altitude, geometric altitude or geopotential height, respectively. For each of the two temperature-based tropopause heights, two TPHs are available: one based on the lapse rate and one based on the cold point.

The corresponding dependent variable at the diagnosed TPH is also recorded: the tropopause bending angle (TPA), refractivity (TPN) and temperature (TPT). The overall profile minimum temperature, PRT, and its height, PRH, are also provided for dry and 'wet' temperature profiles.

Each TPH is associated with a quality control flag, which is initialised at ropp_MIFV = -999 but is otherwise encoded 'bit-wise' as

$$tph_qc_flag = \sum_{r=0}^{7} l(r)2^r$$
(3.1)

where the function l(r) is specified in Table 3.1. If the QC flag is zero, the diagnosed TPH is therefore considered to be 'good'. Any other value indicates some question over the integrity of the derived TPH, the significance of which for the study in hand is for the user to decide. Users are, however, recommended to use the 'good' values first, and only include those TPHs whose QC flags are non-zero if they feel confident that the overall impact of doing so is beneficial.

TPH QC flag component definitions					
Component r	Description	Value $l(r)$			
0	Input data validity check	0 if OK or irrelevant; 1 if not (eg height missing).			
1	Input data depth check	0 if OK or irrelevant; 1 if profile not deep enough.			
2	Input data height check	0 if OK or irrelevant; 1 if profile not high enough.			
3	Cov. trans. sharpness above TPH check	0 if OK or irrelevant; 1 if CT too smooth above TPH.			
4	Cov. trans. sharpness below TPH check	0 if OK or irrelevant; 1 if CT too smooth below TPH.			
5	Double tropopause detection	0 if OK or irrelevant; 1 if a double TP detected			
		(in which case the lower one will be recorded).			
6	TPH minimum height check	0 if OK or irrelevant; 1 if TPH below threshold.			
7	TPH maximum height check	0 if OK or irrelevant; 1 if TPH above threshold.			

Table 3.1: Definition of the components of tph_qc_flag in Eqn (3.1). Not all components are relevant to all types of TPH — for instance, the CT sharpness criteria do not apply to temperature-based TPHs. Conversely, more than one component flag might be set for any particular TPH, in which case the recorded sum will need to be decoded using Eqn (3.1).

The Lev2c substructure of the ROprof data structure has been extended to hold these QC flags, as well as the other TPH diagnostics listed in Table 3.2.

The various methods for calculating TPH are described in the following sections.

3.1 Bending angle

ROPP uses the 'covariance transform' method described by Lewis (2009), in which the TPH is defined as the maximum of the covariance transform of the logarithm of the bending angle, which is defined thus:

$$\tilde{f}(z) = \frac{1}{2a} \int_{\max(z_b, z-a)}^{\min(z_t, z+a)} f(z') \left[f(z') - f(z) \right] \mathrm{d}z'$$
(3.2)

in which $f(z) = \log(\alpha(z)/\alpha_0)$ is the natural logarithm of the bending angle α at impact parameter z, normalised by $\alpha_0 = 1$ rad, z_b (resp. z_t) is the bottom (resp. top) of the profile, and the width of the transform 2a is fixed at 25 km. Taking the covariance transform has the effect of sharpening the kink in $\alpha(z)$. The full algorithm is as follows.

- Ensure the impact parameters a_i are in ascending order.
- Check that some level 1b data exist. If not, return control to ropp_apps/tools/ropp_apps_tph_tool.
- Set QC flag = 0.
- Check the numerical robustness of the input data $\alpha(a)$:

Are there at least two pairs (a_i, α_i) of non-missing data?

- Is a valid radius of curvature defined?
- Is a valid latitude defined?
- If any of these tests fail, set bit TPH_QC_data_invalid of the QC flag.
- If the undulation is missing, set it to zero, issue a warning, but carry on.
- Check the scientific robustness of the input data $\alpha(a)$:

Do the impact heights go down to at least 15km? If not, set bit $\tt TPH_QC_prof_depth$ of the QC flag.

Do the impact heights go up to at least 30km? If not, set bit TPH_QC_prof_height of the QC flag.

- If the QC flag is not zero, stop processing and return to calling program.
- Calculate the impact altitude (= impact parameter a_i radius of curvature undulation) and the natural logarithm of the absolute value of the normalised bending angle, $\log(|\alpha_i|/\alpha_0)$, for valid data pairs (a_i, α_i) between $2.5(3 + \cos(2lat))$ km and $2.5(7 + \cos(2lat))$ km.

- Calculate covariance transform (CT) of $f(z) = \log(\alpha/\alpha_0)$ using Eqn (3.2). See Sec 3.5 for details of the CT calculation.
- If ropp_apps_tph_tool is invoked with the '-d' option, add the bending angle CT, and the corresponding impact parameters, to the ROPP data structure and thence to the output file.
- Define the tropopause height (TPH) as the impact altitude of the (first) peak in the CT.
- Check that the kink in the CT of log α is sharp enough to reliably define a TPH by demanding that the peak value be at least 5% greater than the average CT over the 5 km above it. If it isn't, retain the TPH but set bit TPH_QC_CT_smooth_above of the QC flag.
- Check that the kink in the CT of log α is sharp enough to reliably define a TPH by demanding that the peak value be at least 5% greater than the average CT over the 5 km below it. If it isn't, retain the TPH but set bit TPH_QC_CT_smooth_below of the QC flag.
- In case of a low (< 10 km) TPH, check for the existence of a possible double tropopause by searching for a local maximum in the CT (defined to be a point with a CT at least 5% higher than the average in the 4 km range which it bisects) in the region starting 2 km above the provisional TPH. If this secondary maximum CT is at least 90% of the size of the lower maximum, interpret it as a double tropopause. Retain the lower TPH, but set bit TPH_QC_double_trop of the QC flag.
- Check that the TPH is greater than $2.5(3 + \cos(2lat))$ km. (Should be unnecessary.) If not, set bit TPH_QC_too_low of the QC flag.
- Check that the TPH is lower than $2.5(7 + \cos(2lat))$ km. (Should be unnecessary.) If not, set bit TPH_QC_too_high of the QC flag.
- Copy the QC flag to ro_data%lev2c%tph_bangle_flag. Set ro_data%lev2c%tph_bangle equal to the diagnosed TPH plus the radius of curvature plus the undulation. Set ro_data%lev2c%tpa_bangle equal to the bending angle at the diagnosed TPH.
- The bending angle-derived TPH is therefore an impact parameter. The radius of curvature and undulation need to be subtracted from it to generate the impact altitude above the geoid.

3.2 Refractivity

ROPP uses an extension of the 'covariance transform' method described by Lewis (2009). Eqn (3.2) is used again, but now $f(z) = \log(N(z)/N_0)$ is the natural logarithm of the refractivity N at refractivity altitude z, normalised by $N_0 = 1000$ N-units. 2a remains 25 km. The full algorithm is as follows.

- Ensure the refractivity altitudes h_i are in ascending order.
- Check that some level 2a data exist. If not, return control to ropp_apps/tools/ropp_apps_tph_tool.
- Set QC flag = 0.

• Check the numerical robustness of the input data N(h):

Are there at least two pairs (h_i, N_i) of non-missing data?

- Is a valid latitude defined?
- If either of these tests fail, set bit TPH_QC_data_invalid of the QC flag.
- Check the scientific robustness of the input data N(h):

Do the refracticity altitudes go down to at least 15km? If not, set bit TPH_QC_prof_depth of the QC flag.

Do the refracticity altitudes go up to at least 30km? If not, set bit TPH_QC_prof_height of the QC flag.

- If the QC flag is not zero, stop processing and return to calling program.
- Calculate the the natural logarithm of the absolute value of the normalised refractivity, for valid data pairs (h_i, N_i) between $2.5(3 + \cos(2lat))$ and $2.5(7 + \cos(2lat))$ km.
- Calculate covariance transform (CT) of $f(z) = \log(|N|/N_0)$ using Eqn (3.2). See Sec 3.5 for details of the CT calculation.
- If ropp_apps_tph_tool is invoked with the '-d' option, add the refractivity CT, and the corresponding refractivity altitudes, to the ROPP data structure and thence to the output file.
- Define the tropopause height (TPH) as the refractivity altitude of the (first) peak in the CT.
- Check that the kink in the CT of log *N* is sharp enough to reliably define a TPH by demanding that the peak value be at least 5% greater than the average CT over the 5 km above it. If it isn't, retain the TPH but set bit TPH_QC_CT_smooth_above of the QC flag.
- Check that the kink in the CT of log *N* is sharp enough to reliably define a TPH by demanding that the peak value be at least 5% greater than the average CT over the 5 km below it. If it isn't, retain the TPH but set bit TPH_QC_CT_smooth_below of the QC flag.
- In case of a low (< 10 km) TPH, check for the existence of a possible double tropopause by searching for a local maximum in the CT (defined to be a point with a CT at least 5% higher than the average in the 4 km range which it bisects) in the region starting 2 km above the provisional TPH. If this secondary maximum CT is at least 90% of the size of the lower maximum, interpret it as a double tropopause. Retain the lower TPH, but set bit TPH_QC_double_trop of the QC flag.
- Check that the TPH is greater than $2.5(3 + \cos(2lat))$ km. (Should be unnecessary.) If not, set bit TPH_QC_too_low of the QC flag.
- Check that the TPH is lower than $2.5(7 + \cos(2lat))$ km. (Should be unnecessary.) If not, set bit TPH_QC_too_high of the QC flag.
- Copy the QC flag to ro_data%lev2c%tph_refrac_flag. Set ro_data%lev2c%tph_refrac equal to the diagnosed TPH. Set ro_data%lev2c%tpn_refrac equal to the refractivity at the diagnosed TPH.

• The refractivity-derived TPH is therefore a refractivity altitude.

3.3 Dry temperature

ROPP follows the lapse rate method described by Reichler et al. (2003). This algorithm is expressed in terms of pressure, which is not available as a level 2a field in ROPP. However, the dry pressure can be calculated from the refractivity and dry temperature, both of which are available at this data level. We therefore use the dry pressure as a proxy for the full pressure. Throughout this Section, then, T stands for $T_{\rm dry}$ and p stands for $p_{\rm dry}$. The algorithm in full is as follows.

- Ensure the geometric heights h_i are in ascending order.
- Check that some level 2a data exist. If not, return control to ropp_apps/tools/ropp_apps_tph_tool.
- Set QC flag = 0.
- Check the numerical robustness of the input data T(h):
 - Are there at least three pairs (T_i, h_i) of valid data?
 - Is a valid latitude defined?
- If either of these tests fails, set bit TPH_QC_data_invalid of the QC flag.
- Check the scientific robustness of the input data T(h):

Do the geometric heights go down to at least TPH_{min} = $2.5(3 + \cos(2lat))$ km (or 5 km if latitude is undefined)? If not, set bit TPH_QC_prof_depth of the QC flag.

Do the geometric heights go up to at least TPH_{max} = 2.5(7 + cos(2lat)) km (or 20 km if latitude is undefined)? If not, set bit TPH_QC_prof_height of the QC flag.

- If the QC flag is not zero, stop processing and return to calling program.
- Calculate the dry pressure from the refractivity and dry temperature via $p = NT/\kappa_1$, where the refractivity constant $\kappa_1 = 77.6 \times 10^{-2}$ N-unit K Pa⁻¹. If the refractivity is not available, estimate p from the dry temperature profile, by assuming T varies linearly between levels. The hydrostatic equation then implies

$$p_{i+1}/p_i = (T_{i+1}/T_i)^{-g/R_{\rm dry}\beta_i}$$

where

$$eta_i = (T_{i+1} - T_i)/(h_{i+1} - h_i) = \langle \partial T/\partial h \rangle$$
 over the layer.

This method requires an estimate of the pressure at the first level, p_1 , which is crudely taken to be

$$p_1 = p_{\text{ref}} \exp(-gh_1/RT_1).$$

If this estimate of p_1 is made, a warning message is issued.

• Smooth p and T according to

$$T_i \mapsto (T_{i-1} + T_i + T_{i+1})/3,$$

 $p_i \mapsto (p_{i-1} + p_i + p_{i+1})/3.$

- Calculate the Exner pressure $\Pi_i = (p_i/p_{ref})^{\kappa}$, where $\kappa = R_{dry}/C_p \approx 0.285$ and $p_{ref} = 1000$ hPa.
- Calculate (-1 times) the lapse rate according to $-\Gamma_{i+1/2} = (-g/C_p) \frac{T_{i+1}-T_i}{T_{i+1}-T_i} \frac{\Pi_{i+1}+\Pi_i}{T_{i+1}+T_i}$.
- If ropp_apps_tph_tool is invoked with the '-d' option, add (-1 times) the lapse rate, and the corresponding geometric heights, to the ROPP data structure and thence to the output file.
- For each point *i* of the profile: if $-\Gamma_{i+1/2}$ and its average over the 2 km above are both greater than $-\Gamma_{WMO} = -2$ K/km, and $-\Gamma_{i-1/2}$ is less than $-\Gamma_{WMO}$, so that i-1/2 and i+1/2 straddle the critical lapse rate, then a first estimate for the index of the lapse rate based TPH is taken to be *i*. The looping over *i* stops.
- Calculate the TPH and TPT by linear interpolation of Γ with Π, followed by linear interpolation of log p with h (since by definition the temperature is varying slowly near the tropopause):

$$2\Pi_{\text{tph}} = (\Pi_{i} + \Pi_{i-1}) + \frac{\Pi_{i+1} - \Pi_{i-1}}{\Gamma_{i+1/2} - \Gamma_{i-1/2}} (\Gamma_{\text{WMO}} - \Gamma_{i-1/2})$$

$$p_{\text{tph}} = p_{\text{ref}} \Pi_{\text{tph}}^{1/\kappa}$$

$$h_{\text{tph}} = h_{i-1} + \frac{h_{i} - h_{i-1}}{\log(p_{i}/p_{i-1})} \log(p_{\text{tph}}/p_{i-1})$$

$$T_{\text{tph}} = T_{i-1} + \frac{T_{i} - T_{i-1}}{\log(p_{i}/p_{i-1})} \log(p_{\text{tph}}/p_{i-1})$$

- Calculate the cold point tropopause to be the height of the minimum of the temperature between TPH_{max} and TPH_{min}. If this differs from the lapse rate derived TPH by more than 2 km, then redefine the cold point TPH to be the height of the minimum temperature within 2 km either side of the lapse rate-defined TPH. A cold point tropopause is only really meaningful in the tropics, so if the absolute value of the latitude is greater than 30°, set bit TPH_QC_data_invalid of the cold point TPH QC flag (ie ro_data%lev2c%tph_tdry_cpt_flag) and leave ro_data%lev2c%tph_tdry_cpt = ropp_MDFV.
- Check that the TPH is greater than TPH_{min} = $2.5(3 + \cos(2lat))$ km. If not, set bit TPH_QC_too_low of the QC flag.
- Check that the TPH is greater than $\text{TPH}_{max} = 2.5(7 + \cos(2\text{lat}))$ km. If not, set bit <code>TPH_QC_too_high</code> of the QC flag.
- Calculate the overall profile minimum temperature and its geometric height.
- Copy the respective QC flags to ro_data%lev2c%tph_tdry_lrt_flag, ro_data%lev2c%tph_tdry_cpt_flag and ro_data%lev2c%prh_tdry_cpt_flag. Set the diagnosed

lapse rate TPH and TPT, cold point TPH and TPT, and entire profile heights and temperatures to their equivalents in the ROPP structure, as defined in Table 3.2.

• The dry temperature-derived TPHs are therefore geometric heights.

3.4 Temperature

ROPP follows the lapse rate method described by Reichler et al. (2003). Since this is expressed in terms of pressure, it is directly applicable to the Level 2b fields of an ROPP profile. The algorithm in full is as follows.

- Ensure the geopotential heights z_i are in ascending order.
- Check that some level 2b data exist. If not, return control to ropp_apps/tools/ropp_apps_tph_tool.
- Set QC flag = 0.
- Check the numerical robustness of the input data T(p(z)):

Are there at least three triplets (T_i, p_i, z_i) of valid data? This means p_i and T_i non-missing and z_i non-negative. If not, try to generate some positive geopotentials z_i from the background profile, assuming it to be in ECMWF format. Re-check the existence of valid input data.

Are all the pressures > 0, as required by the algorithm?

Is a valid latitude defined?

- If any of these tests fail, set bit TPH_QC_data_invalid of the QC flag.
- Check the scientific robustness of the input data T(p(z)):

Do the geopotential heights go down to at least TPH_{min} = 2.5(3 + cos(2lat)) km (or 5 km if latitude is undefined)? If not, set bit TPH_QC_prof_depth of the QC flag.

Do the geopotential heights go up to at least $TPH_{max} = 2.5(7 + cos(2lat))$ km (or 20 km if latitude is undefined)? If not, set bit TPH_QC_prof_height of the QC flag.

- If the QC flag is not zero, stop processing and return to calling program.
- Calculate the Exner pressure $\Pi_i = (p_i/p_{ref})^{\kappa}$, where $\kappa = R_{dry}/C_p \approx 0.285$ and $p_{ref} = 1000$ hPa.
- Calculate (-1 times) the lapse rate according to $-\Gamma_{i+1/2} = (-g/C_p) \frac{T_{i+1}-T_i}{\Pi_{i+1}-\Pi_i} \frac{\Pi_{i+1}+\Pi_i}{T_{i+1}+T_i}$.
- If ropp_apps_tph_tool is invoked with the '-d' option, add (-1 times) the lapse rate, and the corresponding geopotential heights, to the ROPP data structure and thence to the output file.
- For each point *i* of the profile: if $-\Gamma_{i+1/2}$ and its average over the 2 km above are both greater than $-\Gamma_{WMO} = -2 \text{ K/km}$, and $-\Gamma_{i-1/2}$ is less than $-\Gamma_{WMO}$, so that i-1/2 and i+1/2 straddle the critical lapse rate, then a first estimate for the index of the lapse rate based TPH is taken to be *i*. The looping over *i* stops.

• Calculate the TPH and TPT by linear interpolation of Γ with Π, followed by linear interpolation of log *p* with *z* (since by definition the temperature is varying slowly near the tropopause):

$$2\Pi_{\text{tph}} = (\Pi_{i} + \Pi_{i-1}) + \frac{\Pi_{i+1} - \Pi_{i-1}}{\Gamma_{i+1/2} - \Gamma_{i-1/2}} (\Gamma_{\text{WMO}} - \Gamma_{i-1/2})$$

$$p_{\text{tph}} = p_{\text{ref}} \Pi_{\text{tph}}^{1/\kappa}$$

$$z_{\text{tph}} = z_{i-1} + \frac{z_{i} - z_{i-1}}{\log(p_{i}/p_{i-1})} \log(p_{\text{tph}}/p_{i-1})$$

$$T_{\text{tph}} = T_{i-1} + \frac{T_{i} - T_{i-1}}{\log(p_{i}/p_{i-1})} \log(p_{\text{tph}}/p_{i-1})$$

- Calculate the cold point tropopause to be the height of the minimum of the temperature between TPH_{max} and TPH_{min}. If this differs from the lapse rate derived TPH by more than 2 km, then redefine the cold point TPH to be the height of the minimum temperature within 2 km either side of the lapse rate-defined TPH. A cold point tropopause is only really meaningful in the tropics, so if the absolute value of the latitude is greater than 30°, set bit TPH_QC_data_invalid of the cold point TPH QC flag (ie ro_data%lev2c%tph_temp_cpt_flag) and leave ro_data%lev2c%tph_temp_cpt = ropp_MDFV.
- Check that the TPH is greater than $\text{TPH}_{min} = 2.5(3 + \cos(2\text{lat}))$ km. If not, set bit <code>TPH_QC_too_low</code> of the QC flag.
- Check that the TPH is greater than $\text{TPH}_{max} = 2.5(7 + \cos(2\text{lat}))$ km. If not, set bit TPH_QC_too_high of the QC flag.
- Calculate the overall profile minimum temperature and its geopotential height.
- Copy the respective QC flags to ro_data%lev2c%tph_temp_lrt_flag, ro_data%lev2c%tph_temp_cpt_flag and ro_data%lev2c%prh_temp_cpt_flag. Set the diagnosed lapse rate TPH and TPT, cold point TPH and TPT, and entire profile heights and temperatures to their equivalents in the ROPP structure, as defined in Table 3.2.
- The temperature-derived TPHs are therefore geopotential heights.

3.5 Covariance transformation

The covariance transform in Eqn (3.2) is estimated numerically as follows.

- The lowest index i_L satisfying $z(i_L) > z_L = \max(z_b, z a)$ is found.
- The highest index i_U satisfying $z(i_U) < z_U = \min(z_t, z+a)$ is found.
- The body of the integral is estimated using the trapezium rule:

$$\int_{z(i_L)}^{z(i_U)} f(z') \left[f(z') - f(z) \right] dz' \approx (1/2) \sum_{i=i_L}^{i_U-1} (f_i h_i + f_{i+1} h_{i+1}) (z_{i+1} - z_i)$$
(3.3)

where $h_i = f_i - f_j$. (*j* is the index of the point for which the covariance transform is being computed, corresponding to *z* in the integral formulation Eqn (3.2) — ie, $z = z_j$.)

• A correction is made at the lower limit by linearly extrapolating f(z) below $z(i_L)$:

$$\int_{z_L}^{z(i_L)} f(z') \left[f(z') - f(z) \right] dz' \approx \Delta z f(i_L) (f(i_L) - f(j)) - m(\Delta z)^2 (f(i_L) - f(j)/2) + m^2 (\Delta z)^3/3$$
(3.4)

where $m = (f(i_L + 1) - f(i_L))/(z(i_L + 1) - z(i_L)) \approx f'(z_L)$ and $\Delta z = z(i_L) - z_L > 0$.

• A correction is made at the upper limit by linearly extrapolating f(z) above $z(i_U)$:

$$\int_{z(i_U)}^{z_U} f(z') \left[f(z') - f(z) \right] dz' \approx \Delta z f(i_U) (f(i_U) - f(j)) + m(\Delta z)^2 (f(i_U) - f(j)/2) + m^2 (\Delta z)^3/3$$
(3.5)

where $m = (f(i_U) - f(i_U - 1))/(z(i_U) - z(i_U - 1)) \approx f'(z_U)$ and $\Delta z = z_U - z(i_U) > 0$.

• The covariance transform at z_j is then given by the sum of Eqns (3.3), (3.4) and (3.5), divided by 2a.

The f(z') - f(z) term in the integrand of Eqn (3.2) is largest in magnitude at the limits of integration. This makes it important to handle 'edge effects' carefully, as otherwise the resulting numerical estimates of the integral are sensitive to the resolution of the input data, and show 'jags' as large terms drop in or out of the sums when the calculation moves from one level to another.

The choice of 2a = 25 km for bending angle and refractivity are the result of some experimentation with a variety of occultation profiles. Users may alter them by editing tph_cov_width in ropp_apps_tph_bangle.f90 or ropp_apps_tph_refrac.f90 respectively.

3.6 Calculating the TPH diagnostics

For ropp_apps_tph_tool to try to calculate all four TPHs, the user need simply call

ropp_apps_tph_tool <inputROPPfile> -o <outputROPPfile>

The user may instead choose to calculate just the bending angle-, refractivity-, dry temperature- or temperature-based TPH by calling ropp_apps_tph_tool with the '-b', '-n', '-y' or '-t' flags respectively. (Two or more of these can be requested at the same time; specifying none is equivalent to requesting all four of them.) Invoking the '-d' option causes more diagnostics to be written to standard output, as well as the covariance transform of bending angle and refractivity and/or the lapse rate of dry temperature and temperature to be added to the output netCDF file.

3.7 Examples of the TPH diagnostics

Figure 3.1 shows all six tropopause heights plotted for a GRAS occultation with a co-located ECMWF background profile from 1 May 2009. (These are the example data provided with the ROPP distribution.) It can be seen that the covariance transforms of the bending angle and refractivity are strongly peaked at the tropopause, the former slightly more sharply (but less smoothly) than the latter. The lapse rates of dry and wet temperature can also be seen to define the tropopause reasonably sharply. The six tropopause heights are reasonably close to each other, each being within 500 m of the average. (Note that for a strict comparison, the impact parameter-based bending angle tropopause height should be reduced to account for the finite refractivity in the profile. This reduction amounts to about 200–500 m at the TPH. In addition, the temperature-based TPH is a geopotential height, which should be converted to a geometric height for a direct comparison. This difference is less than 50 m at 15 km.) The cold point temperature-based TPHs are larger than their lapse rate counterparts, because $\Gamma = 0$ K/km is higher up the profile than $\Gamma = 2$ K/km.

Further examination of an early version of the ROPP TPH routines, including comparison against GRACE-A and TerraSAR-X dry temperature tropopause heights, can be found in the beta review of ROPP 7.0 (Schmidt, 2013).

References

- Lewis, H. W., A robust method for tropopause altitude identification using GPS radio occultation data, *Geophys. Res. Lett.*, *36*, L12808, 2009.
- Reichler, T., Dameris, M., and Sausen, R., Determining the tropopause height from gridded data, *Geophys. Res. Lett.*, *30*, 2042, 2003.
- Schmidt, T., Visiting Scientist Report 22: Beta testing of ROPP 7.0, SAF/ROM/DMI/REP/VS22/001, Version 1.0, 2013.

	TPH parameter definitions					
Element	Type(kind)	Definition	Values			
tph_bangle	Real(8)	Tropopause impact parameter (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPH.			
tpa_bangle	Real(8)	Tropopause bending angle (rad)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPA.			
tph_bangle_flag	Int(2)	Bending angle TPH QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
tph_refrac	Real(4)	Tropopause altitude (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPH.			
tpn_refrac	Real(8)	Tropopause refractivity (N-unit)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPN.			
tph_refrac_flag	Int(2)	Refractivity TPH QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
tph_tdry_lrt	Real(4)	Tropopause altitude (m) (lapse rate)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPH.			
tpt_tdry_lrt	Real(4)	Tropopause dry temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPT.			
tph_tdry_lrt_flag	Int(2)	Dry temperature TPH QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
tph_tdry_cpt	Real(4)	Tropopause altitude (m) (cold point)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPH.			
tpt_tdry_cpt	Real(4)	Tropopause dry temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPT.			
tph_tdry_cpt_flag	Int(2)	Dry temperature TPH QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
prh_tdry_cpt	Real(4)	Entire profile cold point altitude (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PRH.			
prt_tdry_cpt	Real(4)	Entire profile cold point dry temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' PRT.			
prh_tdry_cpt_flag	Int(2)	Entire profile cold point QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
tph_temp_lrt	Real(4)	Tropopause geopotential height (m) (lapse rate)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPH.			
tpt_temp_lrt	Real(4)	Tropopause temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPT.			
tph_temp_lrt_flag	Int(2)	Temperature TPH QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
tph_temp_cpt	Real(4)	Tropopause geopotential height (m) (cold point)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPH.			
tpt_temp_cpt	Real(4)	Tropopause temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' TPT.			
tph_temp_cpt_flag	Int(2)	Temperature TPH QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			
prh_temp_cpt	Real(4)	Entire profile cold point altitude (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PRH.			
prt_temp_cpt	Real(4)	Entire profile cold point temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' PRT.			
prh_temp_cpt_flag	Int(2)	Entire profile cold point QC flag	ropp_MIFV initially/incalculable; $0 - 2^8$ -1 otherwise.			

 Table 3.2: Elements of ro_data%Lev2c substructure relating to TPH

Figure 3.1: Example tropopause heights, 1 May 2009, latitude=27S. Top left: GRAS bending angle and covariance transform. Top right: GRAS refractivity and covariance transform. Bottom left: dry temperature and lapse rate. Bottom right: temperature and lapse rate from co-located ECMWF background.

4 ROPP Applications: Planetary Boundary Layer Height (PBLH) diagnostic

In view of the uncertainty — ontological, definitional and observational — in the 'true' Planetary Boundary Layer Height (PBLH), it was considered useful to generate as many PBLHs as possible in ROPP, so that the user can get some feel for the reliability of the resulting estimates. The ROPP applications module (ropp_apps) therefore includes a tool (ropp_apps/tools/ropp_apps_pblh_tool) to diagnose the PBLH from profiles of bending angle, refractivity, dry temperature, background temperature, background specific humidity and background relative humidity. These are, respectively, level 1b, 2a, 2a, 2b, 2b and 2b quantities. The first three are observational; the last three are based on model quantities. In all cases, the PBLH is diagnosed as the height of a minimum (or, in the case of temperature and dry temperature, a maximum) in the vertical gradient of the field in question. These definitions result from the work of Xie (Xie, 2014) who, as part of a ROM SAF Visiting Scientist Contract, investigated various PBLH diagnostics derived from high resolution ERA reanalysis data (Xie, 2014).

In fact, as a result of discussions with experts on PBLH, two boundary layer heights are recorded (if possible): the ones associated with the strongest and second strongest extrema in th vertical gradients. (Many profiles have even more than two such possible PBLHs.)

The corresponding dependent variable at the diagnosed PBLH is also recorded: the boundary layer bending angle, refractivity etc.

Each PBLH is associated with a quality control flag, which is initialised at ropp_MIFV = -999 but is otherwise encoded 'bit-wise' as

$$pblh_qc_flag = \sum_{r=0}^{13} l(r)2^r$$
(4.1)

where the function l(r) is specified in Table 4.1. Thus, if the QC flag is zero or greater than $2^5 = 32$, the diagnosed PBLH is therefore considered to be 'good', although any confidence the user may place on the resulting value should be tempered by consideration of:

- The similarity to the PBLHs derived from other variables of the same profile;
- The nature and number of other possible PBLHs that might have been detected from the same profile in particular, the one calculated (and stored in the ROprof profile structure and output file) for the second strongest minimum (or maximum for T and T_{dry}) in the profile; and
- The geographical location of the profile, as stored in the QC flag ('land' or 'coastal' values are perhaps more likely to be more extreme and/or variable than those over subtropical oceans, for example).

The Lev2c substructure of the ROprof data structure has been extended to hold these QC flags, as well as the other PBLH diagnostics listed in Table 4.2.

PBLH QC flag component definitions					
Component <i>r</i> Description		Value $l(r)$			
0	Input data validity check	0 if OK or irrelevant; 1 if not (eg height missing).			
1	Input data depth check	0 if OK or irrelevant; 1 if profile not deep enough.			
2	Input data height check	0 if OK or irrelevant; 1 if profile not high enough.			
3	PBLH minimum height check	0 if OK or irrelevant; 1 if PBLH below threshold.			
4	PBLH maximum height check	0 if OK or irrelevant; 1 if PBLH above threshold.			
5	Missing longitude	0 if longitude present; 1 if not.			
6	Missing latitude	0 if latitude present; 1 if not.			
7	Double PBLHs	1 if precisely two PBLHs detected; 0 otherwise.			
8	Multiple PBLHs	1 if at least three PBLHs detected; 0 otherwise.			
9	Land location	1 if PBLH detected over land.			
10	Coastal location	1 if PBLH detected over coast.			
11	Polar location	1 if PBLH detected over polar regions.			
12	Subtropical location	1 if PBLH detected over subtropical ocean.			
13	Tropical location	1 if PBLH detected over tropical ocean.			

PBLH QC flag component definitions

Table 4.1: Definition of the components of pblh_qc_flag in Eqn (4.1). More than one component flag might be set for any particular PBLH, of course, in which case the recorded sum will need to be decoded using Eqn (4.1).

The various methods for calculating PBLH in ROPP are described in the following sections.

4.1 Bending angle

ROPP follows the advice of Xie (Xie, 2014) and defines the first (and second, if possible) bending-anglebased boundary layer heights, $PBLH_{\alpha}$, as the heights of minima of the vertical derivative of the bending angle:

$$PBLH_{\alpha} = \arg\min\left(\partial \alpha / \partial h\right) \tag{4.2}$$

in which α is the bending angle and *h* is the vertical geometric distance above the Earth's surface. Note that, unlike the case of tropopause height determination (see Sec 3), where the impact height at the tropopause is reasonably close, proportionately speaking, to the height above the surface, for PBLH determination one must work in terms of a geometrical distance at the outset.

The full algorithm in ropp_apps/pblh/ropp_apps_pblh_bangle.f90 is as follows.

- Ensure the impact parameters a_i are in ascending order.
- Check that some level 1b data exist. If not, return control to ropp_apps/tools/ropp_apps_pblh_tool.
- Set QC flag = 0.
- Check the numerical robustness of the input data $\alpha(a)$:
 - Are there at least two pairs (a_i, α_i) of non-missing data? If not, set bit PBLH_QC_data_invalid of the QC flag.

- Is a valid longitude defined? If not, issue a warning.
- Is a valid latitude defined? If not, assume it to be zero and issue a warning.
- Is a valid surface geopotential defined? If not, assume it to be zero and issue a warning.
- Convert impact parameters *a* to geometric heights *h* by calling subroutine ropp_apps_impact2geom in ropp_apps/common/ropp_apps_utils.f90, which iteratively solves

$$a = rn(r) \tag{4.3}$$

where $n = 1 + 10^{-6}N$ is the refractive index of air, N is the refractivity, and $r = h + R_c + u$ where R_c is the radius of curvature and u is the undulation. If the refractivities or radius of curvature are unavailable, or Eqn (4.3) is otherwise insoluble, bit PBLH_QC_data_invalid of the QC flag is set and control is returned to the calling routine. (Missing undulations are set to zero and a warning is issued.)

- Convert impact heights to heights above surface by subtracting height of the surface geopotential.
- Check the scientific robustness of the input data profile $\alpha(a)$:
 - Is the maximum height at least 5000 m? If not, set bit PBLH_QC_prof_height of the QC flag.
 (5000 m is a reasonable maximum PBLH over, say, the Sahara at the end of a summer day.)
 - Is the minimum height at most 300 m? If not, set bit PBLH_QC_prof_depth of the QC flag. (Setting a lower limit of 300 m should avoid difficulties arising from the surface-based inversions that are sometimes seen over tropical and subtropical oceans, as highlighted by von Engeln and Teixeira (2004).)
- If the QC flag is not zero, stop processing and return to calling program.
- Apply 1–2–1 smoothing to the bending angles α , thus:

$$\alpha_i \mapsto (\alpha_{i-1} + 2\alpha_i + \alpha_{i+1})/4$$

• Calculate the vertical derivative Γ at the half-integer points:

$$\Gamma_{i+1/2} := (\partial \alpha / \partial h)_{i+1/2} = (\alpha_{i+1} - \alpha_i) / (h_{i+1} - h_i)$$

Find the number of, and indices of, all the local minima of ∂α/∂h between 300 m and 5000 m. If no minima are found, set bit PBLH_QC_data_invalid of the QC flag. If one PBLH is found, calculate its position by calling subroutine ropp_apps_pblh_locate in ropp_apps/common/ropp_apps_utils.f90. If two or more are found, calculate their positions by calling it twice, once for each of the strongest two minima. ropp_apps_pblh_locate estimates the location of the minimum (or maximum) of the gradient by fitting a quadratic through (Γ_{i*-1/2}, h_{i*-1/2}), (Γ_{i*+1/2}, h_{i*+1/2}) and (Γ_{i*+3/2}, h_{i*+3/2}), where i*+1/2 is the index of the local extremum in the vertical gradient Γ. The location of the minimum of this quadratic defines the estimated PBLH, h*, as well as the the bending angle at the

PBLH, α_* , which may be of interest. We find, if i + 1/2 is the location of the minimum of $\partial \alpha / \partial h$:

$$h^* = (1/2)(h_{i*} + h_{i*+1}) - (a/2b)$$

$$\alpha^* = (1/2)(\alpha_{i*} + \alpha_{i*+1}) + (a/2b)(-\Gamma_{i*+1/2} + (a^2/6b))$$

where

$$a = \frac{\Gamma'_{+}\Delta h_{-} + \Gamma'_{-}\Delta h_{+}}{\Delta h_{+} + \Delta h_{-}}$$

$$b = \frac{\Gamma'_{+} - \Gamma'_{-}}{\Delta h_{+} + \Delta h_{-}}$$
where
$$\Gamma'_{\pm} = \frac{\Gamma_{i*+1\pm 1/2} - \Gamma_{i*\pm 1/2}}{\Delta h_{\pm}} \text{ and }$$

$$\Delta h_{\pm} = (1/2) \left(h_{i*+3/2\pm 1/2} - h_{i*-1/2\pm 1/2}\right)$$

- Check that extrapolation errors haven't made the PBLH(s) less than 300 m; if they have, set it/them to ropp_MDFV and set bit PBLH_QC_too_low of the QC flag. (If two PBLHs are detected, only set this flag if both are too low.)
- Check that extrapolation errors haven't made the PBLH(s) greater than 5000 m; if they have, set it/them to ropp_MDFV ansd set bit PBLH_QC_too_high of the QC flag. (If two PBLHs are detected, only set this flag if both are too high.)
- Calculate the 'geographical region' of the profile according to its location and set bit PBLH_QC_land or PBLH_QC_coast etc of the QC flag accordingly.
- Copy the QC flag to ro_data%lev2c%pblh_bangle_flag. Set ro_data%lev2c%pblh_bangle equal to the firs (or only) diagnosed PBLH. Set ro_data%lev2c%pbla_bangle equal to the bending angle at the first diagnosed PBLH. Set ro_data%lev2c%pblh_bangle2 and ro_data%lev2c%pbla_bangle2 to be the corresponding fields at the second PBLH, if one was diagnosed (otherwise leave as ropp_MDFV).

4.2 Refractivity

The calculation of refractivity-based boundary layer height, $PBLH_N$ follows a very similar pattern to that of the bending-angle-based PBLH described in Sec 4.1, except that:

• The underlying definition is now of course

$$PBLH_N = \arg\min\left(\frac{\partial N}{\partial h}\right); \tag{4.4}$$

- The vertical coordinate *h* is the given refractivity altitude minus the height of the surface geopotential;
- Checks on the existence of radius of curvature or undulation are neither needed nor made;
- The first and second PBLHs are stored in ro_data%lev2c%pblh_refrac and ro_data%lev2c%pblh_refrac2.

• The refractivities at the first and second PBLH are stored in ro_data%lev2c%pbln_refrac and ro_data%lev2c%pbln_refrac2.

Full details can be found in ropp_apps/pblh/ropp_apps_pblh_refrac.f90.

4.3 Dry temperature

ROPP follows the advice of Xie (2014) and defines the first (and second) dry-temperature-based boundary layer heights, $PBLH_{Tdry}$, as the heights of *maxima* of the vertical derivative of the dry temperature:

$$PBLH_{Tdry} = \arg \max \left(\frac{\partial T_{dry}}{\partial h} \right)$$
(4.5)

in which T_{dry} is the dry temperature and h is the vertical geometric distance above the Earth's surface. As for refractivity (see Sec 4.2), the vertical coordinate h is the given refractivity altitude minus the height of the surface geopotential.

The basic algorithm used by ropp_apps/pblh/ropp_apps_pblh_tdry.f90 is very similar to that of ropp_apps/pblh/ropp_apps_pblh_bangle.f90, save that we are looking for maxima in $\partial T_{dry}/\partial h$ rather than minima in $\partial \alpha/\partial h$. The only material difference is the generation of dry temperatures, if necessary, by subroutine ropp_apps_calc_tdry in ropp_apps/common/ropp_apps_utils.f90. These are estimated by downwards integration of the dry temperature equation (see Sec 5.6.3 of ROPP_PP User Guide (2021) for further details)

$$d\log p/dz = -\left(g_{wmo}/R_{dry}\kappa_1\right)N\exp(-\log p) = -CN\exp(-\log p)$$
(4.6)

where z is the geopotential height, so that we can use constant $g_{wmo} = 9.80665 \text{ ms}^{-2}$, $R_{dry} = 287.05 \text{ J}$ K⁻¹ kg⁻¹ and $\kappa_1 = 0.776 \text{ N-unit K Pa}^{-1}$ and therefore $C = g_{wmo}/R_{dry}\kappa_1 = 0.044025 \text{ Pa m}^{-1} \text{ N-unit}^{-1}$. A simple climatological estimate of dT_{dry}/dz near the top of the profile, at i = n - 1, allows Eqn (4.6) to be integrated to the surface by second order explicit midpoint differencing, thus:

$$\log p_{i-1/2} = \log p_i - (1/2)C(z_{i-1} - z_i)N_i \exp(-\log p_i), \text{ followed by}$$
(4.7)

$$\log p_{i-1} = \log p_i - C(z_{i-1} - z_i) \sqrt{N_i N_{i-1}} \exp(-\log p_{i-1/2}), \text{ subject to}$$
(4.8)

$$p_{n-1} = -N_{n-1} \frac{C + \kappa_1^{-1} (dT_{dry}/dz)_{n-1}}{(d\log N/dz)_{n-1}} \approx -N_{n-1} \frac{C + \kappa_1^{-1} (dT_{dry}/dz)_{n-1}}{\log(N_n/N_{n-2})/(z_n - z_{n-2})},$$
(4.9)

from which T_{dry} can be found using

$$T_{dry} = \kappa_1 \exp(\log p) / N. \tag{4.10}$$

(The geometric mean estimate of $N_{i-1/2}$, $\sqrt{N_i N_{i-1}}$, is preferred in Eqn (4.8) because the refractivity is likely to vary more exponentially than linearly.)

After integrating Eqns (4.7) and (4.8) from i = n - 1 to i = 2, the pressure (and thence dry temperature) at the top of the profile, i = n, is estimated from

$$\log p_n = \log p_{n-2} - C(z_n - z_{n-2})N_{n-1}\exp(-\log p_{n-1}).$$
(4.11)

This ropp_apps dry temperature calculation is slightly different (simpler) from that in the ropp_pp and ropp_fm modules, but it is good enough for the diagnostic purposes here.

The dry-temperature-based PBLH(s) are stored as elements pblh_tdry and pblh_tdry2 of the ro_data%lev2c structure, while the corresponding dry temperatures are stored in pblt_tdry and pblt_tdry2 in the same structure.

4.4 Temperature

The calculation of temperature-based boundary layer height, PBLH_T, in ROPP follows that of the drytemperature-based PBLH described in Sec 4.3. The PBLH is again defined by the position of the maximum of $\partial T/\partial h$. Unlike the previous calculation, however, there is no facility to generate the data from other information: if the (level 2b) temperatures T are missing from the input file, PBLH_T cannot be calculated.

The temperature-based PBLH(s) are stored as elements pblh_temp and pblh_temp2 of the ro_data%lev2c structure, while the corresponding temperatures are stored in pblt_temp and pblt_temp2 in the same structure.

4.5 Specific humidity

The calculation of specific-humidity-based boundary layer height, $PBLH_q$, in ROPP mirrors that of the temperature-based PBLH described in Sec 4.4, except that the PBLH is defined by the position of the *minimum* of $\partial q/\partial h$. Again, if the (level 2b) specific humidities q are missing from the input file, $PBLH_q$ cannot be calculated.

The specific-humidity-based PBLH(s) are stored as elements pblh_shum and pblh_shum2 of the ro_data%lev2c structure, while the corresponding specific humidities are stored in pblq_shum and pblq_shum2 in the same structure.

4.6 Relative humidity

The calculation of relative-humidity-based boundary layer height, $PBLH_{\rho}$ in ROPP follows that of the specific-humidity-based PBLH described in Sec 4.5: $PBLH_{\rho}$ is defined by the position of the minimum of $\partial \rho / \partial h$. Relative humidities ρ , however, are not part of the standard ROprof data structure, so they need to be calculated from the (level 2b) temperature, pressure and specific humidity, which must therefore be available for this diagnostic to be calculable. For this, ropp_apps/pblh/ropp_apps_pblh_rhum.f90 uses the formulas in the ECMWF IFS documentation (ECMWF, 2018), namely:

$$\rho = \frac{qp}{e_s(T)\left(\varepsilon + q(1-\varepsilon)\right)} \ 100\% \tag{4.12}$$

where p is the pressure, q is the specific humidity, $\varepsilon \approx 0.622$ is the molecular weight of water divided by that of dry air, and the saturated vapour pressure $e_s(T)$ is given by

$$e_s(T) = \alpha e_{sw}(T) + (1 - \alpha) e_{si}(T)$$
 (4.13)

where the 'quadratic ramp' lpha is defined as a function of temperature T in K by

$$\alpha = \begin{cases} 0, & T < 250.16 \text{ K} \\ \left((T - 250.16) / (273.16 - 250.16) \right)^2, & 250.16 \text{ K} \le T \le 273.16 \text{ K} \\ 1, & 273.16 \text{ K} < T \end{cases}$$
(4.14)

and the saturated vapour pressures over pure water, e_{sw} , and pure ice, e_{si} , are functions of temperature which are given in function esat in ropp_apps/pblh/ropp_apps_pblh_rhum.f90.

The relative-humidity-based PBLH(s) are stored as elements pblh_rhum and pblh_rhum2 of the ro_data%lev2c structure, while the corresponding relative humidities are stored in pblq_rhum and pblq_rhum2.

4.7 Calculating the PBLH diagnostics

For ropp_apps_pblh_tool to (try to) calculate all six PBLHs, the user need simply call

```
ropp_apps_pblh_tool <inputROPPfile> -o <outputROPPfile>
```

The user may instead choose to calculate just the bending angle-, refractivity-, dry temperature-, temperature-, specific humidity- or relative humidity-based PBLH by calling ropp_apps_pblh_tool with the '-b', '-n', '-y' '-t', '-q' or '-r' flags respectively. (Two or more of these can be requested at the same time; specifying none is equivalent to requesting all six of them.) Invoking the '-d' option causes more diagnostics to be written to standard output, as well as the dependent variable, independent variable and vertical derivative profiles to be added to the output netCDF file.

4.8 Examples of the PBLH diagnostics

Figure 4.1 shows all six pairs of PBL heights plotted for a COSMIC occultation (vertical resolution 150–200 m) and a colocated 70-level (vertical resolution 50–100 m) Met Office background profile from 1 April 2013, for a point in a subtropical stratocumulus region. (This the example dataset provided with the ROPP distribution.) In this carefully chosen case the principal PBLHs estimated by all six measures are reasonably close: 2.2 ± 0.2 km. This is not too far off von Engeln and Teixeira's ERA-derived, relative-humidity-based PBLH climatology (von Engeln and Teixeira, 2013).

Rarely is the conclusion so clear cut. Even in this special case, the 'observationally' defined PBLH measures (top row of Fig 4.1) suggest a second PBLH at around 3.1-3.2 km, which the model-defined PBLHs on the bottom row entirely fail to capture. Indeed, they suggest a much lower second PBLH at 0.6–0.7 km — to which, in turn, the observational measures are oblivious, perhaps because of the poorer vertical resolution.

A fuller summary of some preliminary results of using the PBLH schemes implemented in ROPP can be found in (ROM SAF, 2016). It concludes that, overall, the 'best' observationally based PBLH is the one that is based on refractivity, PBLH_N, while the 'best' model-based PBLH is the one that is based on specific humdity, PBLH_q. Further investigations into the variability, reliability, accuracy and utility of the ROPP PBLH diagnostics are planned, but even if they were complete this would not be the place to discuss the results in detail. The intention here is that the PBLH diagnostics encoded in ROPP are sufficiently robust and scientifically sound to allow such investigations to begin.

References

- ECMWF, IFS documentation Cy45r1. Part IV: Physical processes, IFS documentation, ECMWF, https://www.ecmwf.int/en/elibrary/18714-part-iv-physical-processes, 2018.
- ROM SAF, Planetary Boundary Layer Height diagnostics in ROPP, SAF/ROM/METO/REP/RSR/024, 2016.
- ROM SAF, The Radio Occultation Processing Package (ROPP) Pre-processor module User Guide, SAF/ROM/METO/UG/ROPP/004, Version 11.0, 2021.
- von Engeln, A. and Teixeira, J., A ducting climatology derived from the European Centre for Medium-Range Weather Forecasts global analysis fields, *Journal of Geophysical Research*, *109*, doi:10.1029/2003JD004 380, 2004.
- von Engeln, A. and Teixeira, J., A Planetary Boundary Layer Height Climatology Derived from the ECMWF Reanalysis Data, *Journal of Climate*, *26*, 6575–6590, 2013.
- Xie, F., Visiting Scientist Report 21: Investigation of methods for the determination of the PBL height from RO observations using ECMWF reanalysis data, SAF/ROM/DMI/REP/VS21/001, Version 1.0, 2014.

	T (11 1)		
Element	Type(kind)	Definition	Values
pblh_bangle	Real(4)	PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pbla_bangle	Real(4)	PBLH bending angle (rad)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLA.
pblh_bangle2	Real(4)	Second PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pbla_bangle2	Real(4)	Second PBLH bending angle (rad)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLA.
pblh_bangle_flag	Int(2)	Bending angle PBLH QC flag	ropp_MIFV initially/incalculable; $0 - 2^{14}$ -1 otherwise.
pblh_refrac	Real(4)	PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pbln_refrac	Real(4)	PBLH refractivity (N-unit)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLN.
pblh_refrac2	Real(4)	Second PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pbln_refrac2	Real(4)	Second PBLH refractivity (N-unit)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLN.
pbln_refrac_flag	Int(2)	Refractivity PBLH QC flag	ropp_MIFV initially/incalculable; $0 - 2^{14}$ -1 otherwise.
pblh_tdry	Real(4)	PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblt_tdry	Real(4)	PBLH dry temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLT.
pblh_tdry2	Real(4)	Second PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblt_tdry2	Real(4)	Second PBLH dry temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLT.
pblh_tdry_flag	Int(2)	Dry temperature PBLH QC flag	ropp_MIFV initially/incalculable; $0 - 2^{14}-1$ otherwise.
pblh_temp	Real(4)	PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblt_temp	Real(4)	PBLH temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLT.
pblh_temp2	Real(4)	Second PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblt_temp2	Real(4)	Second PBLH temperature (K)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLT.
pblh_temp_flag	Int(2)	Temperature PBLH QC flag	ropp_MIFV initially/incalculable; $0 - 2^{14}-1$ otherwise.
pblh_shum	Real(4)	PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblq_shum	Real(4)	PBLH specific humidity (g/kg)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLQ.
pblh_shum2	Real(4)	Second PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblq_shum2	Real(4)	Second PBLH specific humidity (g/kg)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLQ.
pblh_shum_flag	Int(2)	Specific humidity PBLH QC flag	ropp_MIFV initially/incalculable; $0 - 2^{14}-1$ otherwise.
pblh_rhum	Real(4)	PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblr_rhum	Real(4)	PBLH relative humidity (%)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLR.
pblh_rhum2	Real(4)	Second PBLH height (m)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLH.
pblr_rhum2	Real(4)	Second PBLH relative humidity (%)	ropp_MDFV initially/incalculable; otherwise a 'valid' PBLR.
pblh_rhum_flag	Int(2)	Relative humidity PBLH QC flag	ropp_MIFV initially/incalculable; 0 - 2 ¹⁴ -1 otherwise.

PBLH parameter definitions

 Table 4.2:
 Elements of ro_data%Lev2c substructure relating to PBLH

blue (lower *x*-axis row: strongest minima Met Office temperature. Figure 4.1: Example PBL heights, 1 April 2013, COSMIC bending-angle-(or vertical maxima specific-humidity and relative-humidity-based PBLHs. gradients ð refractivity- and dry-temperature-based PBLHs; $T_{
m dry}$ and Ы red (upper *x*-axis). are both South Pacific stratocumulus region. shown PBLHs from the first Basic fields in bottom row: and second Top

SAF/ROM/METO/UG/ROPP/005 Version 11.0

EUMETSAT

ROPP_APPS

User Guide

A Installing and using ROPP

A.1 Software requirements

ROPP is written in standard Fortran 95. Thus, compilation and use of the routines forming ROPP require the availability of standard ISO-conforming compilers. Fortran 95 was preferred over Fortran 90 because it has a number of convenient features. In particular, it allows elemental functions and pointers can be nullified when they are declared.

A.2 Software release notes

The latest ROPP distribution is available for download via the ROM SAF website http://www.romsaf.org. The ROPP Release Notes available from the ROPP download page and provided with the main ROPP download tarfile gives instructions for unpacking and installing the complete ROPP package, or individual modules. Users are strongly recommended to refer to the ROPP Release Notes and use the build and configure tools described therein. The information contained here is intended to complement the ROPP Release Notes. Where any contradiction between the User Guide and ROPP Release Notes exist, the ROPP Release Notes page is considered to be the most up-to-date latest information.

A.3 Third-party packages

To fully implement ROPP, the code uses some standard third-party packages. These are all non-commercial and cost-free. Note that third-party codes are only needed by the ropp_utils, ropp_io and ropp_pp modules, so are optional if these modules are not required by the user.

All third-party code or packages used by ROPP are, by definition, classed as 'Pre-Existing Software' and all rights remain with the originators. Separate rights licences may be part of these distributions — some may have a licence which may impose re-distribution restrictions — and such licences must be adhered to by users.

If a third-party package is required, this must be built and installed before attempting to build the ROPP code. For convenience, these packages should be installed to the same root path as ROPP. It is highly recommended that the package is compiled using the same compiler and using the same compiler flags as will be used to build the ROPP code. Example configure scripts for supported compilers are provided in the ropp_build module available from the ROPP download website. See Section A.4 for further details.

A.3.1 NetCDF (optional in principle)

The input/output library ropp_io uses Unidata's netCDF data format. Thus, the netCDF library and its associated utility programs (like ncdump, ncgen) are required and must be properly installed on the user's system before the compilation of the ropp_io package can be attempted. netCDF may also be used for reading MSIS or BAROCLIM climatology data as part of the ropp_pp module.

The SAF provides versions of the netCDF distribution, which have been successfully integrated with ROPP, alongside the ROPP distribution. This may not be the most recent distribution. Latest versions are freely available from

http://www.unidata.ucar.edu/software/netcdf/

With effect from ROPP9.0, ROPP netCDF build support for 'classic' netCDF-4 has been dropped, which implies a need for HDF5 and, optionally, ZLIB libraries. These last two can be found at

https://support.hdfgroup.org/HDF5/

and

http://www.zlib.net/

respectively.

In addition, the supported versions of the netCDF library are now split into two parts: a netCDF-Core library, written in C, and a netCDF-Fortran interface. The ROPP buildpack script (see Sec A.4 for more details) allows installation of these libraries as follows:

```
> buildpack zlib <compiler>
> buildpack hdf5 <compiler>
> buildpack netcdf <compiler> (the netCDF-Core library)
> buildpack netcdff <compiler> (the netCDF-Fortran library)
```

These packages need to be installed in this order, since each depends on the previous one. Note, however, that the zlib and the HDF5 libraries may already be installed as part of a standard Linux distribution, in which case, of course, the user need not build a local version.

Note that the tests subdirectory of the ropp_io distribution contains a simple test to check if the netCDF installation works; see Section A.7 for details.

A very useful complementary set of tools for handling and manipulating netCDF data files are the netCDF Operators nco¹. While the latter are not required for using ROPP libraries and sample applications, we highly recommend them.

Some example and test programs provided with the ropp_pp, ropp_apps, ropp_fm and ropp_1dvar packages read data via ropp_io. A complete installation of the ropp_io library is therefore required if the test programs or one of the sample applications are to be run. As a consequence, the complete installation of these packages also requires the availability of netCDF. Note, however, that the libraries libropp_pp.a, libropp_fm.a and libropp_1dvar.a can be compiled and installed without ropp_io

¹See http://nco.sourceforge.net/.

and therefore without netCDF; the configuration script will recognise the absence of these libraries and only compile and install the core pre-processor, forward model or 1DVar routines (i.e. those with no dependencies on netCDF or ropp_io).

A.3.2 BUFR (optional)

The GNSS-RO BUFR encoder/decoder tools ropp2bufr and bufr2ropp in ropp_io require either the Met Office's 'MetDB' or the ECMWF BUFR library to be pre-installed. Alternatively, the BUFR encoder/decoder tools ropp2bufr_eccodes and bufr2ropp_eccodes can be used if the ECMWF ecCodes library is pre-installed. If no BUFR library is detected by the installation configure script, then these tools will not be built.

The tools to BUFR-encode EUMETSAT-format grouped netCDF data, eum2bufr and eum2bufr_eccodes in ropp_io, require the ECMWF BUFR library or ECMWF ecCodes library to be pre-installed, respectively.

The MetDB BUFR package is available without charge on request from the ROPP Development Team but with some licence restrictions. The ECMWF BUFR package is licensed under the GNU/GPL and can be downloaded from:

https://software.ecmwf.int/wiki/display/BUFR

The ECMWF ecCodes package is licensed under Apache (2.0), and can be downloaded from:

https://confluence.ecmwf.int/display/ECC/ecCodes+Home

Note that a small change has been made to the ecCodes tarball supplied with ROPP to suppress the warning message that is produced each time a missing data indicator is set. This change can be made to a user's own copy of the ecCodes library by using the patch provided at ropp_io/tools/eccodes_patch.

Both libraries generate essentially identical data when decoded (there may be non-significant round-off differences due to use of single- vs. double-precision interfaces). While the MetDB library is easier to install from a portability point of view, the ROPP buildpack script makes the ECMWF installation compatibly with ROPP more transparent. Therefore users can employ whichever BUFR package they prefer. Thus, the MetDB library could be built with

> buildpack bufr <compiler>

or

> buildpack mobufr <compiler>

while the ECMWF BUFR library would be be built with

> buildpack ecbufr <compiler>

and the ECMWF ecCodes library would be be built with

> buildpack eccodes <compiler>

In order to install BUFR tables and related files, and for the applications to find them at run-time, an environment variable must be pre-defined to the path to these files. For instance, for the MetDB library:

```
> export BUFR_LIBRARY=<path>/data/bufr/
```

or for the ECMWF BUFR library or ecCodes library:

```
> export BUFR_TABLES=<path>/data/bufr/
```

Note that in both cases, the path must currently be terminated with a '/' character, although this restriction has been relaxed for later (v20+) releases of the MetDB BUFR library. By default, the buildpack script will set <path> to be ROPP_ROOT.

A.3.3 GRIB (optional) - either GRIB_API or ecCodes

The GRIB background reading tool grib2bgrasc in ropp_io requires either the ECMWF GRIB_API library or the ECMWF ecCodes library to be pre-installed. If neither is detected by the installation configure script, then this tool will not be built.

The ECMWF GRIB_API package is licensed under Apache (2.0), and can be downloaded from:

https://software.ecmwf.int/wiki/display/GRIB/

The ROPP buildpack script allows installation of the GRIB_API by typing:

> buildpack grib <compiler>

The ECMWF ecCodes package is licensed under Apache (2.0), and can be downloaded from:

https://confluence.ecmwf.int/display/ECC/ecCodes+Home

The ROPP buildpack script allows installation of ecCodes by typing:

> buildpack eccodes <compiler>

A.3.4 SOFA (optional)

The routines in ropp_utils that transform coordinates between reference frames have the option of using the IAU Standards of Fundamental Astronomy (SOFA) library to convert between some frames. If this library is unavailable, less sophisticated formula-based versions of the routines will be used instead.

The SOFA libraries are freely available for use, provided the routines are not modified in any way. They can be downloaded from

http://www.iausofa.org/

The ROPP buildpack script allows installation of the SOFA library by typing:

> buildpack sofa <compiler>

A.3.5 RoboDoc (optional)

The ROPP Reference Manuals have been auto-generated using the RoboDoc documentation tool² All source code, scripts, etc. have standardised header comments which can be scanned by RoboDoc to produce various output formats, including LaTeX and HTML. If code (and in particular the header comments) is modified, RoboDoc can optionally be used to update the documentation. This tool is not required in order to build the ROPP software.

A.3.6 autoconf and automake (optional)

The automake and autoconf tools, common on most Linux and Unix systems, are not necessary to build the ROPP package as provided, but are useful if any modifications are made to the code or build systems to re-generate the package configure files. Versions at, or higher than, v1.9 are required to support some of the m4 macros defined in the ROPP build system.

A.4 BUILDPACK script

The ROPP package distribution includes a collection of configure and build scripts for a number of compilers and platforms suitable for ROPP and the dependency packages. A top-level BASH shell script buildpack is provided which may be used to automate the build of any ROPP module or dependency package in a consistent way, using the appropriate configure scripts. Use of buildpack is therefore highly recommended for first time build and less experienced users. Summary usage can be obtained using

> buildpack -h

In general, to build and install a package,

> buildpack <package> <comp> [[NO]CLEAN]

where <package> is one of the supported package names (e.g. ropp_fm, ropp_io, netcdf, mobufr, etc.) and <comp> is the required compiler (e.g. ifort, gfortran, etc.).

The buildpack script assumes that all tarball files and configure scripts provided with the ROPP distribution are placed in the same working directory. Packages will be decompressed here and installed to the ROPP_ROOT/<comp> target directory. The script automates the configure – make – make install build cycle described below. Further information on the buildpack script are provided in the ROPP Release Notes.

The shell scripts build*_ropp, build_deps and build_ropp have also been provided to help automate the build process by calling buildpack with a pre-determined sequence of packages or compilers, and to save a copy of all screen output to a disk log file. Users should review and edit these to suit their requirements. Using these tools, a complete check out of ROPP from scratch can be effected by running (in order):

²See http://rfsber.home.xs4all.nl/Robo/robodoc.html.

- > buildzlib_ropp <compiler>
- > buildhdf5_ropp <compiler>
- > buildnetcdf_ropp <compiler> (note that this builds the core and Fortran libs)
- > buildmobufr_ropp <compiler> or buildecbufr_ropp <compiler> or buildeccodes_ropp <compiler>
- > buildgrib_ropp <compiler> or buildeccodes_ropp <compiler>
- > buildsofa_ropp <compiler>
- > build_ropp <compiler>

Or, even more quickly:

- > build_deps <compiler> zlib hdf5 netcdf netcdff mobufr/ecbufr/eccodes grib/eccodes sofa
- > build_ropp <compiler>

A.5 Building and installing ROPP manually

The low-level build sequence performed by buildpack may be implemented manually by more experienced users. After unpacking, all packages are compiled and installed following the configure – make – make install cycle.

- First run the command configure to check for the availability of all required libraries. configure allows the user to specify compiler options, paths to libraries and the location where the software shall eventually be installed, on the command line or as environment variables. Based on this information, configure generates user specific Makefiles, allowing a highly customised configuration and installation of the software.
- 2. Compilation is then initiated with the command make.
- 3. If building the software was successful, a make install will install libraries, header and module files as well as any executables in the directories specified by the user via the configure step.

Note that the ROPP modules partially depend on each other. In particular, all packages require that ropp_utils has been installed successfully. This package therefore needs to be compiled and installed first. Most packages make use of the ropp_io package for sample applications and testing, and should therefore be installed next if these are required. Note that users wishing to use ROPP source code directly in their own applications need not install the ropp_io module. If the ropp_io module is not available at build time, only the source code libraries will be compiled. We thus recommend the following build order:

- i) Third-party packages: zlib, hdf5, netcdf, netcdff, mo/ecbufr, grib (as required)
- ii) ropp_utils
- iii) ropp_io (if required)
- iv) ropp_pp (if required)
- v) ropp_apps (if required)
- vi) ropp_fm (if required)
- vii) ropp_1dvar (if required)

Note that *all* libraries need to be built with the same Fortran compiler, and preferably with the same version of the compiler as well.

Supported Fortran (and C) compilers are listed in the Release Notes distributed with the ROPP package.

A.5.1 Unpacking

Once the required third-party software packages have been installed successfully, the ROPP packages can be installed. The complete ROPP package and individual modules are distributed as gzipped tar (.tar.gz) files. The complete package file name consists of the version name (e.g. ropp-11.0.tar.gz). This file contains the complete ROPP distribution. The module file names consist of the package's name (e.g. ropp_utils) and version (e.g. 11.0), as in ropp_utils-11.0.tar.gz. If GNU tar is available (as on Linux systems), gzipped tar files can be unzipped with

```
> tar -xvzf ropp-11.0.tar.gz
```

Older, or non-GNU, versions of tar might need

> gunzip -c ropp-11.0.tar.gz | tar -xv

In all cases, a new subdirectory named (in the above example) ropp-11.0 will be created which contains the source code of the complete package.

A.5.2 Configuring

Details on the installation procedure for the individual packages can be found in the files README.unix and README.cygwin for the installation under Unix and Windows (with Cygwin), respectively. Here, we provide a brief example for a Unix or Linux system.

Unpacking the ropp_build package will create the configure/ sub-directory containing a number of mini-scripts for local build configuration. The files have names <package>_configure_<compiler>_<os> where <package> is the package name (ropp, netcdf), <compiler> is the compiler ID (ifort, nagfor, pgf95, ...) and <os> is the operating system ID, as output by the uname(1) command but entirely in lower case (linux, cygwin, ...). Note these configure mini-scripts are also used by the high-level buildpack script. The example configure scripts for specific platforms and compilers may need to be edited for optimal local use, or users may create their own following one of the examples.

The main configure scripts provided assume that the external libraries and individual ROPP modules are all installed under \$ROPP_ROOT, i.e. the libraries can be found in the directory \$ROPP_ROOT/lib and/or \$ROPP_ROOT/lib64, and header and module files in \$ROPP_ROOT/include. The \$ROPP_ROOT location should be specified as an environment variable, e.g.

- > export ROPP_ROOT=\$HOME (for sh, ksh and bash users)
- > setenv ROPP_ROOT \$HOME (for csh and tcsh users)

For most compilers, this means that the two paths to the header and module files need to be specified via the proper compiler options — usually via the -I option. The linker also needs to know where libraries are

located; on most Unix systems, this can be achieved by specifying the -L option at link time. Users are referred to the examples provided in the configure package for further details.

Running the appropriate script from configure/ will set the required compiler flags and specify the header, module and library paths before running the configure script. For example if the Fortran 95 compiler is named (say) ifort, the following command would be sufficient to configure a package for later compilation:

- > cd ropp_<module>
- > ../configure/ropp_configure_ifort_linux

The configure script will check for all required libraries and add the required options for the linker. If configure is not successful finding the required libraries, an error message will be produced, and further compilation will not be possible. Should the configuration step fail entirely, the file config.log created during the run of configure usually gives some clues on what went wrong; the most likely reason for failing is that compiler or linker options (and in particular paths to include files or libraries) are not set correctly.

Note that ropp_io may optionally use other external libraries in order to support additional features. For example, the ropp_io library will provide two conversion tools from ROPP to BUFR and back if a supported BUFR library is found. The existence of such additional libraries is also checked during configure. If these libraries are missing, however, the installation will proceed without building the parts related to the missing library. Should the build process fail to find usable BUFR libraries, for example, and therefore fail to build the BUFR tools, config.log should again provide evidence on what went wrong.

A.5.3 Compiling

If configuration was successful, the software can be built with the command

This will compile all relevant source code, but may take several minutes. The resulting object library archive will be located in the build subdirectory. It will be named similar to the package following usual Unix conventions; for example, the ropp_utils library is named libropp_utils.a. Sample applications and test programs or scripts will also have been built in the relevant subdirectories. Sample and test runs can be performed without installing the software; for details on available test programs, see A.7.

Currently supported Fortran compilers include (on Linux unless otherwise stated): Intel's ifort (v16 and v17); NAG's nagfor (v6.1); Portland Group's pgf95 (v16); GNU gfortran (v4.8.5); Cray's ftn (v8.3.4). For the authoritative list please refer to the ROPP Release Notes and README files in each sub-package.

A.5.4 Installing

After building the software successfully, the command

> make

> make install

will install libraries in {prefix}/lib, Fortran modules in {prefix}/include, and any application programs in {prefix}/bin. Here, {prefix} is the prefix directory given as argument to the --prefix option of the configure command. By default, this is \$ROPP_ROOT. If no --prefix is given, the installation root directory defaults to /usr/local which would normally require root (sudo) privileges.

A.5.5 Cleaning up

The temporary files created during the compilation of any ROPP package can be removed from the package directory tree with

> make clean

Note that this will keep the information gathered during configuration as well as the build libraries and executables intact. Thus, a new build can be attempted using make without the need for another configure. To remove all data related to the build and install process, run

> make distclean

which will restore the original state of the unpacked package, but with all potential user modifications to the source code still in place.

If the software has been installed previously, but shall be removed from the user's computer, this can be accomplished with the command

> make uninstall

performed in the source code distribution directory. Note that this requires a configuration which is identical to the one used for the original installation of the software. It is not necessary to rebuild the software again before uninstalling it.

A.6 Linking

If one (or more) ROPP packages have been installed successfully, linking your application's code against the ROPP libraries requires the specification of all ROPP and all external libraries. For example, to create an executable from your own application.f90 and the ropp_io libraries, something like

> ifort -o application application.f90 -L/usr/local/lib -L\$ROPP_ROOT/lib \
 -L\$ROPP_ROOT/lib64 -lropp_io -lropp_utils -lnetcdf (-lnetcdff)

will be required. (Since netCDF-4.1.1, the netCDF C and Fortran routines have been split, with the latter held in libnetcdff.a. Hence, if compiling Fortran routines against a recent version of netCDF, -lnetcdff must be included in the list of libraries to be linked. Note that the netCDF libraries recommended for use with ROPP are now split in this way.)

A.7 Testing

The ROPP software has undergone formal testing before distribution, as will all future modifications and improvements. A subset of the test procedures and some reference files are provided with the source code in order to facilitate quick tests whether the compilation was completed successfully. Users can run these tests to ensure that there are no major problems. It should be kept in mind, though, that not all of the functionality of the corresponding package is fully tested. Note also that several of the test scripts attempt to run IDL to generate output which can be compared against existing reference plots. Generally the user would only do this if one of the tests failed. If IDL is unavailable the tests will bypass this step.

A.7.1 ropp_utils

Tested as part of the other modules, mainly with ropp_io.

A.7.2 ropp_io

The subdirectory tests of the ropp_io distribution contains several test programs and scripts to test various aspects of the software. A test is provided to check the user's installation of the netCDF library. They can be run after a successful compilation of the ropp_io package with

> make test_netcdf

from within the tests subdirectory. The program executed for this test does not use ropp_io, but is exclusively based on the native Fortran 90 interfaces for netCDF. Failure of this test strongly indicates that there is a problem with the installation or setup of the external library, which needs to be fixed before ropp_io can be used.

A second test can be run with

> make test_ropp

which runs a script performing several conversions between ROPP data files. Running this test through make has the advantage that the results of the conversions are interpreted properly and result in 'success' or 'failure' messages.

If a supported BUFR library is available, the tests subdirectory will also contain a test script for the two programs ropp2bufr and bufr2ropp which convert ROPP data files to and and from BUFR format data files. Issuing the command

> make test_bufr

will run a number of conversions and provide some verbose information on the content of the BUFR files and the encoding and decoding process. The script finally also compares the results. Its output should be self-explanatory. Note that due to limitations of the BUFR format, non-significant loss of precision may be detected and flagged as differences from the reference file; this is normal.

The gfz2ropp and ucar2ropp tools to convert GFZ native text files or UCAR netCDF files to roppstandard netcdf are tested with the commands

> make test_gfz

> make test_ucar

The grib2bgrasc and bgrasc2ropp tools, which extract background profiles from GRIB-format gridded data and convert to ascii format, and then convert this to a ROPP-format netCDF file, are respectively tested with the commands

> make test_grib
> make test_bgrasc

The eum2ropp and eum2bufr tools to convert 'EUMETSAT-format' RO data into standard ROPP netCDF or BUFR files, are tested with the commands

> make test_eum
> make test_eumbufr

Finally, the command

> make test

will run all of the above described tests.

The test of the ropp_io library and tools can also be tested manually by running, for example,

> t_ropp2ropp -t -n

which will create a series of different files. These should be compared (e.g., using diff) according to the advice given through the program's execution. Users can safely ignore numerical differences in the order of the cutoff in the text representation of the ROPP data files. Also note that different file names will show up in the first line of the text representation of netCDF data files (files created by the test script with the extension .cdl) and can be ignored. The test_ropp target actually does the same, but interprets the differences between the files with the above issues in mind. Note that the output of t_ropp2ropp can be found in the file t_ropp2ropp.log when run through make.

A.7.3 ropp_pp

The subdirectory tests of the ropp_pp distribution contains testing software, to compare the geometric optic and wave optic processing with known output, check the consistency of the Abel integral routines and their inverses, and compare the ionospheric correction processing with known output. It also tests a low resolution of the wave optics propagator code, which resides in the ropp_pp module. Run

> make test

to check if solutions agree with precalculated solutions to within expected small tolerances. If IDL is available on the user's machine, plots of the results are made and can be compared against reference plots. A table summarising the results of the tests is written to stdout after they have all run.

A.7.4 ropp_apps

The subdirectory tests of the ropp_apps distribution contains testing software, to calculate tropopause height, and planetary boundary layer height, from a variety of profile data: bending angles, refractivities, background temperatures etc. Run

> make test

to check if solutions agree with precalculated solutions to within expected small tolerances. A table summarising the results of the tests is written to stdout after they have all run.

A.7.5 ropp_fm

The subdirectory tests of the ropp_fm distribution contains testing software. Run

> make test

to check if everything is working correctly. A series of tests are run to run the 1D and 2D operator applications to generate simulated refractivity and bending angle profiles, which are compared with precalculated data. Also included are tests of the consistency of the 1D and 2D tangent linear and adjoint routines. Warning messages are written to stdout if the operator, tangent linear and adjoint routines do not meet the expected (demanding) consistency checks. If IDL is available on the user's machine, plots of the results are made and can be compared against reference plots. A table summarising the results of the tests is written to stdout after they have all run.

A.7.6 ropp_1dvar

A simple test is provided to check the correct running of the 1D–Var stand-alone application. This inputs a file of 'observations' (refractivity profiles) simulated from a set of ECMWF model background profiles. The same backgrounds are used in the 1D–Var retrieval. Hence the expected retrieved output profiles should be identical to the background (within rounding errors).

Further tests are run of retrievals based on COSMIC observations (refractivities and bending angles) and co-located Met Office background profiles, and of retrievals based on GRAS observations (refractivities and bending angles) and co-located ECMWF background profiles. A simple test of a retrieval using L1 and L2 bending angles is also included.

The subdirectory tests of the ropp_1dvar distribution contains the testing software. Run

> make test

to check if everything is working correctly. The results of each test are numerically compared to reference results, and a PASS/FAIL message issued to stdout if the differences are smaller/greater than some small tolerance. If IDL is available on the user's machine, plots of the results are made and can be compared against reference plots. A table summarising the results of the tests is written to stdout after they have all run.

A.8 Troubleshooting

If something goes wrong during the configuration step, carefully check the full output of the last unsuccessful configure run to get an idea why the software could not be built; this can be found in the file config.log. This also applies if parts of ROPP are not built (e.g. the BUFR tools), even though the required additional libraries are available.

During compilation, warnings that indicate unused variables (e.g. with the NAG compiler) or the potential trimming of character variables (with Intel compilers) can safely be ignored. If the compilation is successful, but installation fails, make sure you have write permissions on the installation directories.

If linking against ROPP libraries fails because of unresolved externals, make sure that *all* relevant libraries – *including all external ones* – are specified in the correct order (some linkers are not able to recursively browse through several libraries in order to resolve externals) with lower-level libraries following higher-level (ROPP) ones.

If the BUFR encoding or decoding fail with messages about missing run-time BUFR tables, check that the appropriate environment variable BUFR_LIBRARY (for the MetDB library) or BUFR_TABLES (for the ECMWF library) have been correctly set to the path of the installed BUFR tables, and that the path ends with a '/' character.

Forward modelling of, and retrievals using, L1 and L2 bending angles impose heavier memory requirements than the more standard use of neutral bending angles. Users should therefore be prepared to increase the local memory available on their machines if using this feature.

If an ROPP module compiles and runs satisfactorily, but produces unexpected results, an easy first step in tracking down the problem is to print out extra diagnostic information. Most of the ROPP tools provide the facility to do this by means of the '-d' option. ropp_pp, ropp_1dvar, ropp_apps and ropp_fm also allow the user to add sets of pre-defined variables to the ROprof structure, which are written out in netCDF format with the usual variables. The first two modules do this by means of an option in a configuration file; the last two by means of a command line option in (some of) the tools. In fact, all ROPP modules allow the user to add specified variables to the ROprof structure in this way, by calling ropp_io_addvar, as described in the ROPP I/O user Guide. This obviously requires the code to be recompiled.

B ropp_apps program files

The ropp_apps module provides tools to generate tropopause heights, and planetary boundary layer heights, from profiles of RO data variables including bending angle, refractivity, dry temperature, or (wet) temperature.

Files listed in bold correspond to executable stand-alone tools. These call lower-level routines. In order to build this module the required packages must be first installed. Routines having additional dependencies on other packages or ROPP modules are listed with the required modules given in brackets. If the additional (optional) packages are not recognised by the configure script, only the core functions will be compiled and installed.

- Required packages: ropp_utils
- Optional packages: ropp_io, netcdf
- Stand-alone tools and test programs (optional)

```
tools/
```

ropp_apps_tph_tool.f90 (requires ropp_io)
ropp_apps_pblh_tool.f90 (requires ropp_io)

tests/

test_apps_tph.sh (requires ropp_io)
test_apps_pblh.sh (requires ropp_io)
ropp_apps_compare.f90 (requires ropp_io, ropp_utils)
ropp_apps_summary.f90 (requires ropp_utils)

• Integrated code

```
pblh/
```

```
ropp_apps_pblh_bangle.f90 (requires ropp_io)
ropp_apps_pblh_refrac.f90 (requires ropp_io)
ropp_apps_pblh_tdry.f90 (requires ropp_io)
ropp_apps_pblh_temp.f90 (requires ropp_io)
ropp_apps_pblh_shum.f90 (requires ropp_io)
ropp_apps_pblh_rhum.f90 (requires ropp_io)
ropp_apps_pblh_region.f90
```


tph/

ropp_apps_tph_bangle.f90 (requires ropp_io)
ropp_apps_tph_refrac.f90 (requires ropp_io)
ropp_apps_tph_tdry.f90 (requires ropp_io)
ropp_apps_tph_temp.f90 (requires ropp_io)
ropp_apps_cov_transform.f90

common/

ropp_apps.f90
ropp_apps_constants.f90
ropp_apps_types.f90
ropp_apps_utils.f90
ropp_apps_version.f90

C ROPP extra diagnostic data

For reference and for completeness, the listings of the all ROPP modules' extra variables are listed below.

C.1 ropp_io_addvar

The general form of the extra data, appended to the RO_prof structure by ropp_io_addvar, is described in Table C.1.

	Structure element	Description
• •	%vlist%VlistDOd%name %vlist%VlistDOd%long_name %vlist%VlistDOd%units %vlist%VlistDOd%range %vlist%VlistDOd%DATA	Name of 1^{st} 0D extra variable Long name of 1^{st} 0D extra variable Units of 1^{st} 0D extra variable Range of 1^{st} 0D extra variable Value of 1^{st} 0D extra variable
•	%vlist%VlistD0d%next%name (etc)	Name (etc) of 2^{nd} 0D extra variable
•	%vlist%VlistD0d%next%next%name (etc)	Name (etc) of 3^{rd} 0D extra variable
• · · • · ·	%vlist%VlistD1d%name %vlist%VlistD1d%long_name %vlist%VlistD1d%units %vlist%VlistD1d%range %vlist%VlistD1d%DATA %vlist%VlistD1d%next%name (etc)	Name of 1^{st} 1D extra variable Long name of 1^{st} 1D extra variable Units of 1^{st} 1D extra variable Range of 1^{st} 1D extra variable Value of 1^{st} 1D extra variable Name (etc) of 2^{nd} 1D extra variable
•	%vlist%VlistD1d%next%next%name (etc)	Name (etc) of 3 rd 1D extra variable
• •	%vlist%VlistD2d%name %vlist%VlistD2d%long_name %vlist%VlistD2d%units %vlist%VlistD2d%range %vlist%VlistD2d%DATA %vlist%VlistD2d%next%name (etc)	Name of 1^{st} 2D extra variable Long name of 1^{st} 2D extra variable Units of 1^{st} 2D extra variable Range of 1^{st} 2D extra variable Value of 1^{st} 2D extra variable Name (etc) of 2^{nd} 2D extra variable
•	%vlist%VlistD2d%next%next%name (etc)	Name (etc) of 3 rd 2D extra variable

ROprof (Additional variables requested by call to ropp_io_addvar, throughout ROPP)

 Table C.1: Additional elements of ROprof structure, available throughout ROPP

C.2 PPDiag

The extra data which are output to the netCDF file if config%output_diag is set to .TRUE. in ropp_pp, are described in Table C.2.

PPDiag (config%output_diag = TRUE in ropp_pp)		
Structure element	Description	
%CTimpact	CT processing impact parameter (m)	
%CTamplitude	CT processing amplitude	
%CTamplitude_smt	CT processing smoothed amplitude	
%CTimpactL2	CT processing L2 impact parameter (m)	
%CTamplitudeL2	CT processing L2 amplitude	
%CTamplitudeL2_smt	CT processing smoothed L2 amplitude	
%ba_ion	lonospheric bending angle in L1 (rad)	
%err_neut	Error covariance of neutral bending angle (rad ²)	
%err_ion	Error covariance of ionospheric bending angle (rad ²)	
%wt_data	Weight of data (data:data+clim) in profile	
%sq	SO badness score: MAX[err_neut ^{1/2} / α_N]×100%	
%L2_badness	L2 phase correction badness score	
%L2_min_SLTA	Lowest valid L2 SLTA (m)	

 Table C.2: Elements of PPDiag structure, available from ropp_pp

C.3 ropp_fm_bg2ro

The extra data which are appended to the ROprof structure if the ropp_fm tool ropp_fm_bg2ro_1d is called without the '-f' option, are described in Table C.3.

ROprof (Absence of '-f' option in call to ropp_fm_bg2ro_1d, in ropp_fm)		
Structure element	Description	
%gradient_refrac %gradient_bangle	$rac{\partial N_i / \partial x_j}{\partial lpha_i / \partial x_j}$ matrix	

Table C.3: Additional elements of ROprof structure, available from ropp_fm. See Table C.1 for the detailed structure.

C.4 VarDiag

The extra data which are output to the netCDF file if config%extended_1dvar_diag is set to .TRUE. in ropp_1dvar, are described in Table C.4.

VarDiag (config%extended_1dvar_diag = TRUE in ropp_1dvar)		
Structure element	Description	
%n_data	Number of observation data	
%n_bgqc_reject	Number of data rejected by background QC	
%n_pge_reject	Number of data rejected by PGE QC	
%bg_bangle	Background bending angle	
%bg_refrac	Background refractivity	
%OmB	Observation minus background	
%OmB_sigma	OmB standard deviation	
%pge_gamma	PGE check gamma value	
%pge	Probability of Gross Error along profile	
%pge_weights	PGE weighting values	
%ok	Overall quality flag	
%J	Cost function value at convergence	
%J_scaled	Scaled cost function value $(2J/m)$	
%J_init	Initial cost function value	
%J_bgr	Background cost function profile	
%J_obs	Observation cost function profile	
%B_sigma	Forward modelled bg standard deviation	
%n_iter	Number of iterations to reach convergence	
%n_simul	Number of simulations	
%min_mode	Minimiser exit mode	
%res_bangle	Analysis bending angle	
%res_refrac	Analysis refractivity	
%OmA	Observation minus analysis	
%OmA_sigma	OmA standard deviation	
%bg_ne	Background electron density	
%bg_ne_sigma	Error in background electron density	
%res_ne	Analysis electron density	
%res_ne_sigma	Error in analysis electron density	
%VTEC_bg	VTEC of background electron density	
%VTEC_an	VTEC of analysis electron density	

Table C.4: Elements of VarDiag structure, available from ropp_1dvar.

D ROPP user documentation

Title	Reference	Description
ROPP User Licence	SAF/ROM/METO/LIC/ROPP/002	Legal conditions on the use of ROPP software
ROPP Overview	SAF/ROM/METO/UG/ROPP/001	Overview of ROPP and package
		content and functionality
ROPP_IO User Guide	SAF/ROM/METO/UG/ROPP/002	Description of ropp_io module
		content and functionality
ROPP_PP User Guide.	SAF/ROM/METO/UG/ROPP/004	Description of ropp_pp module
		content and functionality
ROPP_APPS User	SAF/ROM/METO/UG/ROPP/005	Description of ropp_apps module
Guide.		content and functionality
ROPP_FM User Guide.	SAF/ROM/METO/UG/ROPP/006	Description of ropp_fm module
		content and functionality
ROPP_1DVAR User	SAF/ROM/METO/UG/ROPP/007	Description of ropp_1dvar mod-
Guide.		ule content and functionality
ROPP UTILS Reference	SAF/ROM/METO/RM/ROPP/001	Reference manual for the
Manual		ropp_utils module
ROPP IO Reference	SAF/ROM/METO/RM/ROPP/002	Reference manual for the ropp_io
Manual		module
ROPP FM Reference	SAF/ROM/METO/RM/ROPP/003	Reference manual for the ropp_fm
Manual		module
ROPP 1D–Var Reference	SAF/ROM/METO/RM/ROPP/004	Reference manual for the
Manual		ropp_1dvar module
ROPP PP Reference	SAF/ROM/METO/RM/ROPP/005	Reference manual for the ropp_pp
Manual		module
ROPP APPS Reference	SAF/ROM/METO/RM/ROPP/006	Reference manual for the
Manual		ropp_apps module
WMO FM94 (BUFR)	SAF/ROM/METO/FMT/BUFR/001	Description of BUFR template for
Specification for Radio		RO data
Occultation Data		

Table D.1: ROPP user documentation

Title	Reference	Description
Mono-dimensional thinning	SAF/GRAS/METO/REP/GSR/001	Technical report on profile thin-
for GPS Radio Occultations		ning algorithm implemented in
		ROPP
Geodesy calculations in	SAF/GRAS/METO/REP/GSR/002	Summary of geodetic calcula-
ROPP		tions to relate geometric and
		geopotential height scales
ROPP minimiser - min-	SAF/GRAS/METO/REP/GSR/003	Description of ROPP-specific
ROPP		minimiser, minROPP
Error function calculation in	SAF/GRAS/METO/REP/GSR/004	Discussion of impact of approx-
ROPP		imating erf in ROPP
Refractivity calculations in	SAF/GRAS/METO/REP/GSR/005	Summary of expressions for cal-
ROPP		culating refractivity profiles
Levenberg-Marquardt min-	SAF/GRAS/METO/REP/GSR/006	Comparison of Levenberg-
imisation in ROPP		Marquardt and minROPP
		minimisers
Abel integral calculations in	SAF/GRAS/METO/REP/GSR/007	Comparison of 'Gorbunov' and
ROPP		'ROM SAF' Abel transform al-
		gorithms
ROPP thinner algorithm	SAF/GRAS/METO/REP/GSR/008	Detailed review of the ROPP
		thinner algorithm
Refractivity coefficients used	SAF/GRAS/METO/REP/GSR/009	Investigation of sensitivity of
in the assimilation of GPS		ECMWF analyses to empiri-
radio occultation measure-		cal refractivity coefficients and
ments		non-ideal gas effects
Latitudinal Binning and	SAF/GRAS/METO/REP/GSR/010	Discussion of alternative spatial
Area-Weighted Averaging		averaging method for RO cli-
of Irregularly Distributed		mate data
RO Data		
ROPP 1D–Var validation	SAF/GRAS/METO/REP/GSR/011	Illustration of ROPP 1D–Var
		functionality and output diag-
		nostics
Assimilation of GPSRO	SAF/GRAS/MEIO/REP/GSR/012	Assimilation of GPSRO Data in
Data in the ECMWF		the ECMIVIE ERA-Interim Re-
EKA-Interim Re-analysis		analysis
KOPP_PP validation	SAF/GRAS/MEIO/REP/GSR/013	Illustration of ROPP_PP func-
		tionality and output diagnostics

Table D.2: GRAS SAF Reports

Title	Reference	Description
A review of the geodesy cal-	SAF/ROM/METO/REP/RSR/014	Comparison of various potential
culations in ROPP		geodesy calculations
Improvements to the ROPP	SAF/ROM/METO/REP/RSR/015	Improved interpolation in
refractivity and bending an-		ROPP forward models
gle operators		
Simplifying EGM96 undula-	SAF/ROM/METO/REP/RSR/016	Simplifying ROPP undulation
tion calculations in ROPP		calculations
Simulation of L1 and L2	SAF/ROM/METO/REP/RSR/017	Simulating L1 and L2 bending
bending angles with a model		angles in ROPP
ionosphere		
Single Frequency Radio Oc-	SAF/ROM/METO/REP/RSR/018	Potential impact of loss of L2
cultation Retrievals: Impact		bending angle on NWP
on Numerical Weather Pre-		
diction		
Implementation of the ROPP	SAF/ROM/METO/REP/RSR/019	Implementation of ROPP 2D
two-dimensional bending an-		forward model at ECMWF
gle observation operator in		
an NWP system		
Interpolation artefact in	SAF/ROM/METO/REP/RSR/020	Investigation into plot anomaly
ECMWF monthly standard		
deviation plots		
5th ROM SAF User Work-	SAF/ROM/METO/REP/RSR/021	Report on 5th ROM SAF User
shop on Applications of GPS		Workshop
radio occultation measure-		
ments		
The use of the GPS radio	SAF/ROM/METO/REP/RSR/022	Impact of reflected occultations
occultation reflection flag for		at ECMWF
NWP applications		
Assessment of a potential re-	SAF/ROM/METO/REP/RSR/023	Assessment of flagged COSMIC
flection flag product		occultations
I he calculation of planetary	SAF/ROM/METO/REP/RSR/024	Description of ROPP PBLH di-
boundary layer heights in		agnostics
ROPP		
Survey on user requirements	SAF/ROM/METO/REP/RSR/025	Results of a ROM SAF survey
for potential ionospheric		of the interest in possible EPS-
products from EPS-SG radio		SG ionospheric products
occultation measurements		
Estimates of GNSS radio oc-	SAF/ROM/METO/REP/RSR/026	RU error statistics as derived
cultation bending angle and		by forward modelling ECIVIVVF
refractivity error statistics		model errors
Recent forecast impact ex-	SAF/ROM/METO/REP/RSR/027	Impacts in NWP of 2014–2015
periments with GPS radio		RO data
occultation measurements		
Description of wave optics	SAF/KUM/METU/KEP/RSR/028	vvave optics propagator in
modelling in KUPP-9 and		
suggested improvements for		
КОРР-9.1		

Table D.	.3: ROM	SAF	Reports
----------	---------	-----	---------

Title	Reference	Description
Testing reprocessed GPS ra-	SAF/ROM/METO/REP/RSR/029	Impact of reprocessed RO data
dio occultation datasets in a		on reanalyses
reanalysis system		
A first look at the feasibil-	SAF/ROM/METO/REP/RSR/030	Single and dual frequency as-
ity of assimilating single and		similation
dual frequency bending an-		
gles		
Sensitivity of some RO mea-	SAF/ROM/METO/REP/RSR/031	lonospheric shape sensitivity
surements to the shape of		
the ionospheric electron den-		
sity profile		
An initial assessment of the	SAF/ROM/METO/REP/RSR/032	KOMPSAT-5 quality assess-
quality of RO data from		ment
KOMPSAT-5		
Some science changes in	SAF/ROM/METO/REP/RSR/033	ROPP-9.1 science
ROPP-9.1		
An initial assessment of the	SAF/ROM/METO/REP/RSR/034	Metop-C quality assessment
quality of RO data from		
Metop-C		
An initial assessment of the	SAF/ROM/METO/REP/RSR/035	FY-3D quality assessment
quality of RO data from		
FY-3D		
An initial assessment of the	SAF/ROM/METO/REP/RSR/036	PAZ quality assessment
quality of RO data from PAZ		
6 th ROM SAF User Work-	SAF/ROM/METO/REP/RSR/037	ROM SAF–IROWG 2019 report
shop		
An initial assessment of the	SAF/ROM/METO/REP/RSR/038	COSMIC-2 quality assessment
quality of RO data from		
COSMIC-2		
Impacts of RO mission dif-	SAF/ROM/METO/REP/RSR/039	RO mission CDR differences
ferences on trends in multi-		
mission data records		
Anomalous GRAS radio oc-	SAF/ROM/METO/REP/RSR/040	Anomalous occultations
cultations		
Assessment of sensitivity of	SAF/ROM/METO/REP/RSR/041	Sensitivity to error covariances
the ROM SAF 1D-Var solu-	. , , , , , ,	-
tions to various error covari-		
ance choices		
A one-dimensional varia-	SAF/ROM/METO/REP/RSR/042	lonospheric 1dvar
tional ionospheric retrieval		
for truncated GNSS Radio		
Occultation measurements		

Table D.4: ROM SAF Reports (continued)

Title	Reference	Description
CDOP-3 Proposal	SAF/ROM/DMI/MGT/CDOP3/001	Proposal for the Third Continu-
		ous Development and Operations
		Phase (CDOP-3) March 2017 –
		February 2022
Co-operation Agreement	EUM/C/85/16/DOC/19	C/A between EUMETSAT and
		DMI, Lead Entity for the CDOP-
		3 of the ROM SAF, signed at the
		86th Council meeting on 7th De-
		cember 2016
Product Requirements	SAF/ROM/DMI/MGT/PRD/001	Detailed specification of the prod-
Document (PRD)		ucts of the ROM SAF
System Requirements	SAF/ROM/DMI/RQ/SRD/001	Detailed specification of the sys-
Document (SRD)		tem and software requirements of
		the ROM SAF

Table D.5: Applicable documents

E Authors

Many people, inside and outside the ROM SAF, have contributed to the development of ROPP. The principal authors are listed alphabetically in Table E.1. The ROM SAF extends its sincere gratitude for their efforts.

ROPP Authors

Name	Current institute	Contribution
Carlo Buontempo Chris Burrows	Met Office ECMWF	Savitzky-Golay thinner code. 2nd ROPP Test Manager. Test folder developments, im- proved FM vertical interpolation scheme.
lan Culverwell	Met Office	2nd ROPP Development Manager. Documentation, test- ing, consolidation, IO development, GRIB2 reader, imple- mentation of tropopause height diagnostics and planetary boundary layer height diagnostics, forward modelling of L1 and L2 bending angles, implementation of VaryChap f2–f2 FM and 1DVAR code
Axel von Engeln	EUMETSAT	Author of original Test Folder system and of EUMETSAT- formatted RO data reader.
Hans Gleisner	DMI	Elements of ropp_pp, prototype GRIB2 reader, $ec{i/f}2ec{i/f}$ code.
Michael Gorbunov	Russian Academy of Sciences	Original pre-processor code.
Sean Healy	ECMWF	Original 1D FM code, 2D FM operator code, introduc- tion of compressibility factors, improved FM vertical inter- polation scheme, forward modelling of L1 and L2 bend- ing angles, 1D and 2D wave optics propagators, prototype VaryChap f2–f2 FM and 1DVAR code.
Helge Jønch- Sørensen	DMI	BAROCLIM code.
Kjartan Kinch	DMI	Elements of ropp_pp.
Kent Bækgaard Lauritsen	DMI	Code reviews; liaison with EUMETSAT (licences, beta tester contracts).
Huw Lewis	Met Office	1st ROPP Development Manager, FM and 1D–VAR extensions. PP module.
Owen Lewis Christian Marquardt	Met Office EUMETSAT	BUFR developments. Author of majority of ROPP-1 code in UTILS, IO, FM and 1DVAR modules, and much personal, pre-existing software
Dave Offiler	Met Office	ROPP Project Manager, IO application code and IO ex- tensions, BUFR format/template.
Michael Rennie Barbara Scherllin- Pirscher	ECMWF Wegener Center	1st ROPP Test Manager. Test folder developments. BAROCLIM (3) dataset for statistical optimisation.
Torsten Schmidt	GFZ	Guidance on tropopause height diagnostics.
Stig Syndergaard	DMI	Original spectral version of MSIS model (expansion in spherical harmonics and Chebychev polynomials), PP module developments.
Francis Warrick	Met Office	Implementation of ecCodes lib; ROPP devt and testing.
Feiqin Xie	Texas A & M	Suggested boundary layer height diagnostic algorithms.

Table E.1: Contributors to ROPP

F Copyrights

The majority of ROPP code is

© Copyright 2009-2021, EUMETSAT, All Rights Reserved.

This software was developed within the context of the EUMETSAT Satellite Application Facility on Radio Occultation Meteorology (ROM SAF), under the Cooperation Agreement dated 29 June 2011, between EUMETSAT and the Danish Meteorological Institute (DMI), Denmark, by one or more partners within the ROM SAF. The partners in the ROM SAF are DMI, Met Office, UK, the Institut d'Estudis Espacials de Catalunya (IEEC), Spain and the European Centre for Medium-Range Weather Forecasts (ECMWF), UK

Some parts of the source code within this distribution were developed within the Met Office outside the context of the ROM SAF and represents pre-existing software (PES); this portion is

© Crown copyright 2018, Met Office. All rights reserved.

Use, duplication or disclosure of this code is subject to the restrictions as set forth in the contract. If no contract has been raised with this copy of the code, the use, duplication or disclosure of it is strictly prohibited. Permission to do so must first be obtained in writing from the Head of Satellite Applications at the following address:

Met Office, FitzRoy Road Exeter, Devon, EX1 3PB United Kingdom

This ROPP package also contains open source code libraries available through its author, Christian Marquardt. This is also PES, and is

 \bigcirc Copyright 2007 Christian Marquardt <christian@marquardt.sc>

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software as well as in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This ROPP package may also contain open source code libraries available through its author, Michael Gorbunov. This is also PES, and is

© Copyright 1998-2010 Michael Gorbunov <michael.gorbunov@zmaw.de>

All rights reserved.

SAF/ROM/METO/UG/ROPP/005

Version 11.0

31 December 2021

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software with the rights to use, copy, modify, merge copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software as well as in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. HOWEVER, ALL EFFORTS ARE BEING MADE BY THE AUTHOR IN ORDER TO FIND AND ELIMINATE ALL POSSIBLE ERRORS AND PROBLEMS. IN THIS CASE THE AUTHOR MAY PROVIDE AN UPDATE.

This ROPP package may also contain open source code libraries available through its author, Stig Syndergaard. This is also PES, and is

© Copyright 1998 Stig Syndergaard <ssy@dmi.dk>

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sublicense the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software as well as in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This ROPP package may also contain a dataset available through its author, Barbara Scherllin-Pirscher, and is

© Copyright 2013-2014 Barbara Scherllin-Pirscher

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the latest BAROCLIM (V3) dataset (the "Dataset") to use, copy, publish and merge copies of the Dataset for scientific and non-commercial purposes only and to permit persons to whom the Dataset is furnished to do so also for scientific but non-commercial purposes only, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Dataset as well as in supporting documentation.

THE DATASET IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DATASET OR THE USE OR OTHER DEALINGS OF THE DATASET.